分析 通過解不等式化簡集合A,B;先算A∩B=∅,再取其補集即可求出a的范圍.
解答 解:集合A={y|y>a2+1或y<a},B={y|2≤y≤4},
若A∩B=∅,$\left\{\begin{array}{l}{a≤2}\\{4≤{a}^{2}+1}\end{array}\right.$,可得a$≤-\sqrt{3}$或$\sqrt{3}≤a≤2$,
則A∩B≠∅,則實數(shù)a的取值范圍是:$\sqrt{3}>$a$>-\sqrt{3}$或a>2.
故答案為:$\sqrt{3}>$a$>-\sqrt{3}$或a>2.
點評 本題考查二次不等式的解法、將集合的關系轉(zhuǎn)化為集合端點的不等關系.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 3 | C. | 6 | D. | 9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com