分析 (1)利用遞推關系可得:$({a_n}-{a_{n-1}})({a_n}+a{\;}_{n-1})=2({a_n}+{a_{n-1}}),n∈{N^*}$,根據(jù)數(shù)列{an}是單調遞增數(shù)列,且a1>0,可得an+an-1≠0,因此an-an-1=2,再利用等差數(shù)列的通項公式即可得出.
(2)由(1)得不等式$\frac{{{a_{n+p}}-8}}{{{a_n}-8}}≥1+\frac{p+8}{{{{(\sqrt{2})}^{{a_n}-1}}}}$,可化為$\frac{2p}{p+8}≥\frac{2n-7}{2^n}$,(n≥4).再利用數(shù)列的單調性即可得出.
解答 解:(1)當n≥2,n∈N*時,an=sn-sn-1,
由$4{s_n}={a_{{n^{\;}}}}^2+2{a_n}-3,n∈{N^*}$,可得$4{s_{n-1}}={a_{n-1}}^2+2{a_{n-1}}-3,n∈{N^*}$,
兩式相減得$4{a_n}={a_{{n^{\;}}}}^2+2{a_n}-{a_{n-1}}^2-2{a_{n-1}},n∈{N^*}$,
${a_{{n^{\;}}}}^2-{a_{n-1}}^2=2{a_n}+2{a_{n-1}},n∈{N^*}$,
化為$({a_n}-{a_{n-1}})({a_n}+a{\;}_{n-1})=2({a_n}+{a_{n-1}}),n∈{N^*}$,
∵數(shù)列{an}是單調遞增數(shù)列,且a1>0,∴an+an-1≠0,
∴an-an-1=2,
∵${a_1}^2=4{S_1}-2{a_1}+3$,且a1>0,∴a1=3.
∴數(shù)列{an}是首項為3,公差為2的等差數(shù)列,
an=2n+1.
(2)由(1)得不等式$\frac{{{a_{n+p}}-8}}{{{a_n}-8}}≥1+\frac{p+8}{{{{(\sqrt{2})}^{{a_n}-1}}}}$,
可化為$\frac{2p}{2n-7}≥\frac{p+8}{2^n}$,p>0,即$\frac{2p}{p+8}≥\frac{2n-7}{2^n}$,(n≥4).
令$f(n)=\frac{2n-7}{2^n}$,則$f(n+1)-f(n)=\frac{2n-5}{{{2^{n+1}}}}-\frac{2n-7}{2^n}$,
=$\frac{-2n+9}{{{2^{n+1}}}}$,
∴f(4)<f(5),n≥5,n∈N*時,f(n+1)<f(n),
∴$f{(n)_{max}}=f(5)=\frac{3}{32}$,
∴$\frac{2p}{p+8}≥\frac{3}{32}$,$p≥\frac{24}{61}$.
∴正數(shù)p的取值范圍是$[\frac{24}{61},+∞)$.
點評 本題考查了遞推關系、不等式的性質、等差數(shù)列的通項公式、數(shù)列的單調性,考查了分類討論方法、推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(1)=$\frac{8}{3}$ | B. | g(1)=$\frac{10}{3}$ | C. | 若a>b,則f(a)>f(b) | D. | 若a>b,則g(a)>g(b) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3710 | B. | 11130 | C. | 21420 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [5,+∞) | B. | [$\sqrt{5}$,+∞) | C. | (1,5] | D. | (1,$\sqrt{5}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
觀看“導數(shù)的應用” 視頻人數(shù) | 觀看“概率的應用” 視頻人數(shù) | 總計 | |
A班 | |||
B班 | |||
總計 |
P(x2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{4}{3}$ | B. | 1 | C. | -1 | D. | $\frac{1}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com