20.奇函數(shù)f(x)滿足f(1)=0,且f(x)在(0,+∞)上是單調(diào)遞減,則$\frac{{2}^{x}-1}{f(x)-f(-x)}$<0的解集為( 。
A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)D.(1,+∞)

分析 利用函數(shù)為奇函數(shù),將不等式化簡,分析分子分母的符號目的地不等式組解之.

解答 解:因?yàn)閒(x)為奇函數(shù),所以$\frac{{2}^{x}-1}{f(x)-f(-x)}$<0變形為$\frac{{2}^{x}-1}{2f(x)}<0$,所以$\left\{\begin{array}{l}{{2}^{x}-1>0}\\{f(x)<0}\end{array}\right.$或者$\left\{\begin{array}{l}{{2}^{x}-1<0}\\{f(x)>0}\end{array}\right.$,又f(1)=0,且f(x)在(0,+∞)上是單調(diào)遞減,
所以不等式組的解為{x|x>1}或者{x|x<-1};
故選:B.

點(diǎn)評 本題考查了函數(shù)的奇偶性運(yùn)用以及分式不等式的解法;正確將不等式轉(zhuǎn)化為熟悉的不等式是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.將編號為1、2、3、4、5的五名同學(xué)全部安排到A、B、C、D四個班級上課,每個班級至少安排一名同學(xué),其中1號同學(xué)不能安排到A班,那么不同的安排方案共有180種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)f(x)是R上的奇函數(shù),當(dāng)x≥0時,f(x)=2x+3x-b(b為常數(shù)),則f(-2)=-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.(lg2)2+0.064${\;}^{-\frac{1}{3}}$+lg5lg20=(  )
A.0.4B.2.5C.1D.3.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=x2+bx+c(b,c∈R,b<0).
(1)若f(x)的定義域?yàn)閇0,1]時,值域也是[0,1],求b,c的值;
(2)若b=-2時,若函數(shù)g(x)=$\frac{f(x)}{x}$對任意x∈[3,5],g(x)>c恒成立,試求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.用斜二側(cè)法畫水平放置的△ABC的直觀圖,得到如圖所示等腰直角△A′B′C′.已知點(diǎn)O′是斜邊B′C′的中點(diǎn),且A′O′=1,則△ABC的BC邊上的高為(  )
A.1B.2C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)為奇函數(shù),且在(0,+∞)上是遞增的,若f(-3)=0,則xf(x)>0的解集是(  )
A.{x|-3<x<0或x>3}B.{ x|x<-3或0<x<3}C.{ x|x<-3或x>3}D.{ x|-3<x<0或0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=2x+$\frac{2}{{2}^{x}}$的最小值為( 。
A.1B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用對人民群眾的建康帶來一定的危害,為了給消費(fèi)者帶來放心的蔬菜,某農(nóng)村合作社會每年投入200萬元,搭建了甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入20萬元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據(jù)以往的種菜經(jīng)驗(yàn),發(fā)現(xiàn)種西紅柿的年收入P、種黃瓜的年收入Q與投入a(單位:萬元)滿足P=80+4$\sqrt{2a}$,Q=$\frac{1}{4}$a+120,設(shè)甲大棚的投入為x(單位:萬元),每年兩個大棚的總收益為f(x)(單位:萬元).
(1)求f(50)的值;
(2)試問如何安排甲、乙兩個大棚的投入,才能使總收益f(x)最大?

查看答案和解析>>

同步練習(xí)冊答案