11.當(dāng)兩人提重為|G|的書包時,夾角為θ,用力為|F|,當(dāng)|F|最小時,θ為0.

分析 當(dāng)兩人手臂共線與重力方向相反時,|F|取得最小值,即可得出.

解答 解:當(dāng)兩人手臂共線與重力方向相反時,|F|取得最小值,θ為0.
故答案為:0.

點評 本題考查了向量的三角形方向與平行四邊形法則,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若集合A={x|log${\;}_{\frac{1}{2}}$(2x+1)>-1},集合B={x|1<3x<9},則A∩B=(  )
A.(0,$\frac{1}{2}$)B.(-$\frac{1}{2}$,$\frac{1}{2}$)C.(0,2)D.($\frac{1}{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.不等式$\sqrt{4-{x^2}}$+$\frac{|x|}{x}$≥0的解集是$[{-\sqrt{3},0})∪({0,2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.對于平面向量$\overrightarrow{a}$,$\overrightarrow$,給出下列四個命題:
命題p1:若$\overrightarrow{a}$$•\overrightarrow$>0,則$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角;
命題p2:“|$\overrightarrow{a}•\overrightarrow$|=|$\overrightarrow{a}$||$\overrightarrow$|”是“$\overrightarrow{a}$$∥\overrightarrow$”的充要條件;
命題p3:當(dāng)$\overrightarrow{a}$,$\overrightarrow$為非零向量時,“$\overrightarrow{a}+\overrightarrow=0$”是“|$\overrightarrow{a}+\overrightarrow$|=||$\overrightarrow{a}$|-|$\overrightarrow$||”的必要不充分條件;
命題p4:若|$\overrightarrow{a}+\overrightarrow$|=|$\overrightarrow$|,則|$2\overrightarrow$|≥|$\overrightarrow{a}$$+2\overrightarrow$|.
其中的真命題是( 。
A.p1,p3B.p2,p4C.p1,p2D.p3,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.給出下列命題:①若x∈R,則x+$\frac{1}{x}$≥2;②若a>0,b>0,則lga+lgb≥2$\sqrt{lga•lgb}$;③若a<0,b<0,則ab+$\frac{1}{ab}$≥2;④不等式$\frac{y}{x}$+$\frac{x}{y}$≥2成立的條件是x>0且y>0.其中正確命題的序號是③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.${∫}_{1}^{3}$|4-2x|dx=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知$\overrightarrow{a}$=(sinx,$\sqrt{3}$cosx),$\overrightarrow$=(cosx,cosx),函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$-$\frac{\sqrt{3}}{2}$,求下列問題
(1)周期;
(2)對稱軸;
(3)對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.用描述法表示下列集合:
(1)奇數(shù)的集合;
(2)正偶數(shù)的集合;
(3)不等式x2+1≤0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若復(fù)數(shù)z滿足z(1+i)=2(sin$\frac{π}{2}$+icos$\frac{π}{2}}$),其中i為虛數(shù)單位,則z=( 。
A.2B.iC.1-iD.l+i

查看答案和解析>>

同步練習(xí)冊答案