20.f(x)=cos($\frac{π}{2}$-x)•cosx+$\sqrt{3}{sin^2}$x的最小正周期為π,單調(diào)遞減區(qū)間為[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z.

分析 利用三角函數(shù)恒等變換的應用化簡函數(shù)解析式為f(x)=sin(2x-$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$,利用周期公式可求最小正周期,由2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z,即可解得單調(diào)遞減區(qū)間.

解答 解:∵f(x)=cos($\frac{π}{2}$-x)•cosx+$\sqrt{3}{sin^2}$x
=sinx•cosx+$\frac{\sqrt{3}(1-cos2x)}{2}$
=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x+$\frac{\sqrt{3}}{2}$
=sin(2x-$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$,
∴最小正周期T=$\frac{2π}{2}$=π,
∴由2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z,解得:kπ+$\frac{5π}{12}$≤x≤kπ+$\frac{11π}{12}$,k∈Z,可得其單調(diào)遞減區(qū)間為:[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z.
故答案為:π,[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z.

點評 本題主要考查了三角函數(shù)恒等變換的應用,考查了三角函數(shù)周期性及其求法,考查了正弦函數(shù)的單調(diào)性,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.復數(shù)$\frac{i}{2+i}$(i是虛數(shù)單位)的模長是( 。
A.$\frac{1}{3}$B.$\frac{1}{5}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.$-\frac{29π}{6}$是( 。
A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖(1)所示,將邊長為1的正六邊形鐵皮的六個角各切去一個全等的四邊形,再沿虛線折起,做成一個無蓋的正六棱柱容器,如圖(2)所示,求這個正六棱柱容器容積最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知a,b∈(0,+∞),且$\frac{1}{a}$+$\frac{1}{2b}$=$\frac{1}{12}$,則9a•3b的最小值為( 。
A.354B.327C.54D.27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若向量$\overrightarrow{AB}$=(3,-2),$\overrightarrow{AC}$=(-1,-4),則向量$\overrightarrow{BC}$為( 。
A.(2,-6)B.(-4,-2)C.(4,2)D.(-4,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若一扇形的圓心角為$\frac{π}{3}$,半徑為6,則扇形的面積為6π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知cos(${\frac{π}{4}$+θ)=-$\frac{3}{5}$,$\frac{11π}{12}$<θ<$\frac{5π}{4}$,求$\frac{{sin2θ+2{{sin}^2}θ}}{1-tanθ}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.(x-2)5的展開式中,二項式系數(shù)的最大值為( 。
A.5B.10C.15D.20

查看答案和解析>>

同步練習冊答案