分析 (Ⅰ)如圖,連接EF.欲證明B,C,F(xiàn),E四點共圓,只需推知“其一個外角等于其鄰補角的內(nèi)對角”(∠C=∠AEF)即可;
(Ⅱ)在直角三角形ADC中利用射影定理得到線段AD的長度;在直角三角形AED中利用勾股定理得到線段AE的長度;最后在直角三角形ADB中利用勾股定理來求線段AB的長度.
解答 解:(Ⅰ)證明:連接EF,由已知A,E,D,F(xiàn)四點共圓,
∴∠FAD=∠FED.
∵∠C+∠FAD=∠AEF+∠FED=90°,
∴∠C=∠AEF,
則B,C,E,F(xiàn)四點共圓.
(Ⅱ) 解:∵直角三角形ADC中,DF⊥AC,
∴由射影定理得:AD2=AF×AC=5×7=35.
直角三角形AED中,$AE=\sqrt{A{D^2}-D{E^2}}=\sqrt{35-{{(2\sqrt{5})}^2}}=\sqrt{15}$,
直角三角形ADB中,DE⊥AB,由射影定理得:AE×AB=AD2,
∴$AB=\frac{{A{D^2}}}{AE}=\frac{35}{{\sqrt{15}}}=\frac{{7\sqrt{15}}}{3}$.
點評 本題考查了射影定理、勾股定理.總結(jié):直角三角形的斜邊上的高是兩直角邊在斜邊上的射影的比例中項;兩條直角邊分別是他們在斜邊上射影與斜邊的比例中項.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
$\overrightarrow x$ | $\overrightarrow y$ | $\overrightarrow w$ | $\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$ | $\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}$ | $\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}$ | $\sum_{i=1}^8{({w_i}-\overline w)({y_i}-\overline y)}$ |
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $210({\sqrt{6}+\sqrt{2}})$米 | B. | $140\sqrt{6}$米 | C. | $210\sqrt{2}$米 | D. | $210({\sqrt{6}-\sqrt{2}})$米 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$,1) | B. | ($\frac{3}{2}$,4) | C. | ($\frac{1}{4}$,$\frac{3}{2}$) | D. | (1,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com