分析 由分段函數(shù)解析式結(jié)合f[f(-$\frac{1}{2}$)]=$\frac{1}{2}$求得a值;求出分段函數(shù)的值域,由并集為R求得a的范圍.
解答 解:∵f(x)=$\left\{\begin{array}{l}x+1,x≤0\\ x+\frac{4}{x}-a,x>0\end{array}$,
∴f(-$\frac{1}{2}$)=$-\frac{1}{2}+1=\frac{1}{2}$,則f[f(-$\frac{1}{2}$)]=f($\frac{1}{2}$)=$\frac{1}{2}$+$\frac{4}{\frac{1}{2}}-a$=$\frac{1}{2}$+8-a=$\frac{1}{2}$,得a=8;
由y=x+1,x≤0,得y≤1;
由y=$x+\frac{4}{x}-a$,x>0,得y≥4-a,
∵f(x)的值域為R,∴4-a≤1,得a≥3.
故答案為:8;a≥3.
點評 本題考查簡單的線性規(guī)劃,考查了分段函數(shù)的應用,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 18cm3 | B. | 6cm3 | C. | $\frac{9}{2}c{m^3}$ | D. | $\frac{27}{2}c{m^3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,1) | B. | $[0,2)∪\{-\frac{18}{e^2}\}$ | C. | $(0,2)∪\{-\frac{18}{e^2}\}$ | D. | $[0,2\sqrt{e})∪\{-\frac{18}{e^2}\}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com