3.設(shè)α是銳角,若sin(α+$\frac{π}{3}$)=$\frac{4}{5}$+sinα,則cos(2α-$\frac{π}{6}$)=(  )
A.$\frac{12}{25}$B.$\frac{24}{25}$C.-$\frac{24}{25}$D.-$\frac{12}{25}$

分析 利用特殊角的三角函數(shù)值,兩角和的正弦函數(shù)公式化簡已知等式可得sin(α-$\frac{π}{3}$)=-$\frac{4}{5}$,可求范圍α-$\frac{π}{3}$∈(-$\frac{π}{3}$,0),利用同角三角函數(shù)基本關(guān)系式可求cos(α-$\frac{π}{3}$),利用兩角和的正弦函數(shù)公式可求sinα,從而可求cosα,利用倍角公式可求cos2α,sin2α,利用兩角差的余弦函數(shù)公式即可計算求值得解.

解答 解:∵sin(α+$\frac{π}{3}$)=$\frac{1}{2}$sinα+$\frac{\sqrt{3}}{2}$cosα=$\frac{4}{5}$+sinα,
∴可得:sin(α-$\frac{π}{3}$)=-$\frac{4}{5}$,
∵α是銳角,
∴α-$\frac{π}{3}$∈(-$\frac{π}{3}$,0),
∴cos(α-$\frac{π}{3}$)=$\sqrt{1-si{n}^{2}(α-\frac{π}{3})}$=$\frac{3}{5}$,
∴sinα=[(α-$\frac{π}{3}$)+$\frac{π}{3}$]=sin(α-$\frac{π}{3}$)cos$\frac{π}{3}$+cos(α-$\frac{π}{3}$)sin$\frac{π}{3}$=$\frac{3\sqrt{3}-4}{10}$,cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{3+4\sqrt{3}}{10}$,
∴cos2α=2cos2α-1=$\frac{7+24\sqrt{3}}{50}$,sin2α=2sinαcosα=$\frac{24-7\sqrt{3}}{50}$,
∴cos(2α-$\frac{π}{6}$)=cos2αcos$\frac{π}{6}$+sin2αsin$\frac{π}{6}$=$\frac{\sqrt{3}}{2}×$ $\frac{7+24\sqrt{3}}{50}$+$\frac{1}{2}×$$\frac{24-7\sqrt{3}}{50}$=$\frac{24}{25}$.
故選:B.

點評 本題主要考查了特殊角的三角函數(shù)值,兩角和的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式,倍角公式,兩角差的余弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.下表是某地區(qū)的一種傳染病與飲用水的調(diào)查表:
得病不得病合計
干凈水52466518
不干凈水94218312
合計146684830
判斷能否以99.9%的把握認為“該地區(qū)的傳染病與飲用不干凈的水有關(guān)”
參考數(shù)據(jù):
P(K2≥k00.250.150.100.050.0250.0100.0050.001
k01.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在數(shù)3和24之間插入兩個數(shù),使這四個數(shù)成等比數(shù)列,則這四個數(shù)的和為45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在一次商貿(mào)交易會上,一商家在柜臺開展促銷抽獎活動,甲、乙兩人相約同一天上午去該柜臺參與抽獎.
(1)若抽獎規(guī)則是從一個裝有5個紅球和3個白球的袋中有放回地取出2個球,當(dāng)兩個球同色時則中獎,求中獎概率;
(2)若甲計劃在9:00~9:40之間趕到,乙計劃在9:20~10:00之間趕到,求甲比乙提前到達的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.從區(qū)間[0,1]上隨機取一個實數(shù)a,則關(guān)于x的一元二次方程x2-x+a=0無實根的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若 2x,x+1,x+2成等差數(shù)列,x=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.從邊長為4的正方形ABCD內(nèi)部任取一點P,則P到對角線AC的距離不大于$\sqrt{2}$的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.容器中盛有5個白乒乓球和3個黃乒乓球.
(1)“從8個球中任意取出1個,取出的是白球”與“從剩下的7個球中任意取出1個,取出的還是白球”這兩事件是否相互獨立?為什么?
(2)“從8個球中任意取出1個,取出的是白球”與“把取出的1個白球放回容器,再從容器中任意取出1個,取出的是黃球”這兩個事件是否相互獨立?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知橢圓C;$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),P是橢圓C上一點,且|PF2|=|F1F2|,直線PF1與圓x2+y2=$\frac{{c}^{2}}{4}$相切,則橢圓的離心率為$\frac{\sqrt{3}-1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案