10.在某公司中秋聯(lián)歡晚會(huì)上設(shè)計(jì)了一個(gè)抽獎(jiǎng)游戲,在一個(gè)口袋中裝有5個(gè)紅球和10個(gè)白球,這些球除顏色外完全相同,一次從中抽出3個(gè)球,至少抽到2個(gè)紅球就中獎(jiǎng),則中獎(jiǎng)的概率為(  )
A.$\frac{20}{91}$B.$\frac{22}{91}$C.$\frac{24}{91}$D.$\frac{26}{91}$

分析 設(shè)抽到紅球的個(gè)數(shù)為X,則X服從超幾何分布,中獎(jiǎng)的概率為P(X≥2)=P(X=2)+P(X=3),由此能求出結(jié)果.

解答 解:設(shè)抽到紅球的個(gè)數(shù)為X,則X服從超幾何分布,
∴中獎(jiǎng)的概率為P(X≥2)=P(X=2)+P(X=3)=$\frac{{C}_{5}^{2}{C}_{10}^{1}}{{C}_{15}^{3}}$+$\frac{{C}_{5}^{3}}{{C}_{15}^{3}}$=$\frac{22}{91}$.
故選:B.

點(diǎn)評(píng) 本昰考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意超幾何分布的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)p:函數(shù)f(x)=lg(ax2-x+$\frac{a}{36}$)的定義域?yàn)镽; q:2x-4x$<2a-\frac{3}{4}$對(duì)一切實(shí)數(shù)x恒成立.如果命題“p且q“為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)f(x)=2lnx-ax在點(diǎn)(1,f(1))處的切線與直線x+6y=0垂直,則實(shí)數(shù)a=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率與雙曲線C2:$\frac{{y}^{2}}{3}$-x2=1的離心率互為倒數(shù),且C1內(nèi)切于圓O:x2+y2=4.
(1)求橢圓C1的方程;
(2)在橢圓C1落在第一象限的圖象上任取一點(diǎn)作C1的切線l,求l與坐標(biāo)軸圍成的三角形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(a-2)x+3,x≤1}\\{\frac{2a}{x},x>1}\end{array}\right.$ 在(-∞,+∞)上是減函數(shù),則a的取值范圍為( 。
A.(0,1)B.(0,1]C.(0,2)D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某地區(qū)2009年至2015年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表:
年份2009201020112012201320142015
年份代號(hào)t1234567
人均純收入y2.93.33.64.44.85.25.9
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2009年至2015年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2016年農(nóng)村居民家庭人均純收入.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)l,m,n是三條不同的直線,α,β,γ是三個(gè)不同的平面,則下列判斷正確的是(  )
A.若l⊥m,m⊥n,則l∥nB.若α⊥β,β⊥γ,則α∥γC.若α∥β,m⊥α,則m⊥βD.若m∥α,m∥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知{an}是各項(xiàng)均為正數(shù)的數(shù)列,{bn}是等差數(shù)列,且a1=b1=1,a5-3b2=7.2a${\;}_{n}^{2}$+(2-an+1)an-an+1=0(n∈N*
(1)求{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn,n∈N*,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在五面體ABCDEF中,四邊形ABCD為菱形,且∠BAD=$\frac{π}{3}$,對(duì)角線AC與BD相交于O,OF⊥平面ABCD,BC=CE=DE=2EF=2.
(Ⅰ) 求證:EF∥BC;
(Ⅱ)求面AOF與平面BCEF所成銳二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案