分析 (1)求得雙曲線的離心率,由題意可得橢圓的離心率e=$\frac{\sqrt{3}}{2}$,即$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,由C1內(nèi)切于圓O:x2+y2=4,可得a=2,則橢圓的方程可求;
(2)由題意設(shè)出切線方程y=kx+m(k<0),和橢圓方程聯(lián)立后由方程僅有一個實根得到方程的判別式等于0,即得到k與m的關(guān)系,求出直線在x軸和y軸上的截距,代入三角形的面積公式后化為含有k的代數(shù)式,然后利用基本不等式求最值.
解答 解:(1)由雙曲線$\frac{{y}^{2}}{3}$-x2=1的離心率為$\frac{2}{\sqrt{3}}$,
橢圓的離心率與雙曲線的離心率互為倒數(shù),
可得e=$\frac{\sqrt{3}}{2}$,即$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,
由C1內(nèi)切于圓O:x2+y2=4,
可得a=2,c=$\sqrt{3}$,b=$\sqrt{{a}^{2}-{c}^{2}}$=1,
可得橢圓C1的方程為$\frac{{x}^{2}}{4}$+y2=1;
(2)由l與橢圓C1相切于第一象限內(nèi)的一點,
可得直線l的斜率必存在且為負,
設(shè)直線l的方程為:y=kx+m(k<0),
聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,消去y整理可得,(1+4k2)x2+8kmx+4m2-4=0,
根據(jù)題意可得方程只有一實根,
則△=64k2m2-16(1+4k2)(m2-1)=0,
整理可得:m2=4k2+1,
由直線l與兩坐標軸的交點分別為(-$\frac{m}{k}$,0),(0,m)且k<0,
則l與坐標軸圍成的三角形的面積S=$\frac{1}{2}$•$\frac{{m}^{2}}{-k}$=(-2k)+$\frac{1}{-2k}$≥2$\sqrt{(-2k)•\frac{1}{-2k}}$=2,
(當且僅當k=-$\frac{1}{2}$時取等號),
則圍成的三角形的面積的最小值為2.
點評 本題考查了橢圓的標準方程的求法,考查了直線與圓錐曲線的關(guān)系,直線與圓錐曲線相切的條件,訓練了利用基本不等式求最值,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | e | D. | $\frac{1}{e}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0<12 | B. | 7<12 | C. | 8>7 | D. | 7>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -10$\sqrt{3}$ | B. | -$\sqrt{3}$ | C. | $\sqrt{3}$ | D. | 10$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8和1.6 | B. | 2和1.6 | C. | 8和8.4 | D. | 2和8.4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{-1+\sqrt{5}}{2}$ | B. | -1+$\sqrt{5}$ | C. | $\frac{-1+\sqrt{3}}{2}$ | D. | $\frac{1+\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{20}{91}$ | B. | $\frac{22}{91}$ | C. | $\frac{24}{91}$ | D. | $\frac{26}{91}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | $5\sqrt{2}$ | C. | 6 | D. | $6\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com