A. | -1 | B. | $-\frac{1}{2}$ | C. | $-\frac{1}{3}$ | D. | -2 |
分析 設A(x1,y1),B(x2,y2),P(x0,y0),可得$\frac{{x}_{1}^{2}}{18}$+$\frac{{y}_{1}^{2}}{9}$=1,$\frac{{x}_{2}^{2}}{18}$+$\frac{{y}_{2}^{2}}{9}$=1,相減可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{18}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{9}$=0,把中點坐標公式、斜率計算公式代入即可得出.
解答 解:設A(x1,y1),B(x2,y2),P(x0,y0),
則$\frac{{x}_{1}^{2}}{18}$+$\frac{{y}_{1}^{2}}{9}$=1,$\frac{{x}_{2}^{2}}{18}$+$\frac{{y}_{2}^{2}}{9}$=1,
相減可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{18}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{9}$=0,
∵x0=$\frac{{x}_{1}+{x}_{2}}{2}$,y0=$\frac{{y}_{1}+{y}_{2}}{2}$,$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=1,
∴$\frac{2{x}_{0}}{18}$+$\frac{1×2{y}_{0}}{9}$=0,
解得kOP=$\frac{{y}_{0}}{{x}_{0}}$=-$\frac{1}{2}$.
故選:B.
點評 本題考查了橢圓的標準方程、中點坐標公式、斜率計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,0) | B. | $(\frac{π}{5},0)$ | C. | (π,0) | D. | $(\frac{3π}{10},0)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -8或-7 | B. | -8或2 | C. | 2或-9 | D. | -2或-8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com