17.已知a,b,c均為實(shí)數(shù),下面命題正確的是(  )
A.$\frac{a}$>c⇒a>bcB.ac2>bc2⇒a>bC.$\frac{a}{c^2}$>$\frac{c^2}$⇒3a<3bD.a>b⇒|c|a>|c|b

分析 根據(jù)題意,利用不等式的基本性質(zhì),對(duì)各選項(xiàng)中的不等式進(jìn)行判定即可.

解答 解:對(duì)于A:當(dāng)b<0時(shí)不成立,故不正確,
對(duì)于B:ac2>bc2⇒a>b,故正確,
對(duì)于C:$\frac{a}{c^2}$>$\frac{c^2}$⇒a>b⇒3a>3b,故不正確,
對(duì)于D:,當(dāng)c=0時(shí),a>b不成立,故不正確,
故選:B.

點(diǎn)評(píng) 本題考查了不等式的基本性質(zhì)的應(yīng)用問題,解題時(shí)應(yīng)根據(jù)不等式的基本性質(zhì),對(duì)每一個(gè)選項(xiàng)進(jìn)行判定,即可得出正確的答案來,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若直線ax-by=1(a>0,b>0)過點(diǎn)(1,-1),則$\frac{1}{a}$+$\frac{1}$的最小值為( 。
A.3B.4C.5D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知四面體ABCD,平面ABD⊥平面ABC,AB=5,BC=3,AC=4,DC與平面ABC所成角為$\frac{π}{4}$,則四面體ABCD的體積的最小值為(  )
A.$\frac{12}{5}$B.$\frac{24}{5}$C.$\frac{8}{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知M是△ABC內(nèi)的一點(diǎn),且$\overrightarrow{AB}$•$\overrightarrow{AC}$=4$\sqrt{3}$,∠BAC=30°,若△MBC,△MCA和△MAB的面積分別為1,x,y,則 $\frac{y+4x}{xy}$的最小值是(  )
A.20B.18C.16D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.定義運(yùn)算$|\begin{array}{l}{a}&\\{c}&lihumrf\end{array}|$=ad-bc,若復(fù)數(shù)x=$\frac{1-i}{1+i}$,y=$|\begin{array}{l}{4i}&{3-xi}\\{1+i}&{x+i}\end{array}|$,則y=-2-2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)a>b>0,c∈R,則下列不等式恒成立的是( 。
A.a|c|>b|c|B.ac2>bc2C.a2c>b2cD.$\frac{1}{a}$<$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某大學(xué)的一個(gè)社會(huì)實(shí)踐調(diào)查小組,在對(duì)大學(xué)生就餐“光盤習(xí)慣”的調(diào)查中,隨機(jī)發(fā)放了120份調(diào)查問卷.對(duì)收回的100份有效問卷進(jìn)行統(tǒng)計(jì),得到如下2×2列聯(lián)表:
做不到光盤能做到光盤合計(jì)
451055
xy45
合計(jì)75m100
(Ⅰ)求表中x,y的值;
(Ⅱ)若在犯錯(cuò)誤的概率不超過P的前提下認(rèn)為良好“光盤習(xí)慣”與性別有關(guān),那么根據(jù)臨界值表,最精確的P的值應(yīng)為多少?請(qǐng)說明理由.
附:獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.250.150.100.050.025
k01.3232.0722.7063.8405.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,A,B,C的對(duì)邊分別為a,b,c,已知4acosA=ccosB+bcosC.
(1)若a=4,△ABC的面積為$\sqrt{15}$,求b,c的值;
(2)若sinB=ksinC(k>0),且△ABC為鈍角三角形,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知A(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2017}}{2017}$,B(x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+$\frac{{x}^{4}}{4}$-…-$\frac{{x}^{2017}}{2017}$,設(shè)函數(shù)F(x)=A(x+5)•B(x-6)且F(x)的零點(diǎn)均在區(qū)間[m,n](m<n,m,n∈Z)內(nèi),則n-m的最小值為( 。
A.11B.12C.13D.14

查看答案和解析>>

同步練習(xí)冊(cè)答案