1.求函數(shù)f(x)=sin(x+$\frac{π}{3}$)+2sin(x-$\frac{π}{3}$)的周期及單調(diào)增區(qū)間.

分析 化簡函數(shù)f(x),求出函數(shù)的周期和單調(diào)區(qū)間即可.

解答 解:f(x)=sin(x+$\frac{π}{3}$)+2sin(x-$\frac{π}{3}$)
⇒f(x)=$\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx+sinx-$\sqrt{3}$cosx
⇒f(x)=$\frac{3}{2}$sinx-$\frac{\sqrt{3}}{2}$cosx=$\sqrt{3}$($\frac{\sqrt{3}}{2}$sinx-$\frac{1}{2}$cosx)
⇒f(x)=$\sqrt{3}$sin(x-$\frac{π}{6}$),
①T=$\frac{2π}{1}$=2π,
②由-$\frac{π}{2}$+2kπ≤x-$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈z,
得:-$\frac{π}{3}$+2kπ≤x≤$\frac{2}{3}$π+2kπ,k∈z,
∴單調(diào)增區(qū)間是[-$\frac{π}{3}$+2kπ,$\frac{2}{3}$π+2kπ],k∈z.

點(diǎn)評 本題考查了三角函數(shù)問題,考查函數(shù)的周期性和單調(diào)性問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)a2+b2=1,x2+y2=4,則ax+by的最大值是(  )
A.2B.$\frac{5}{2}$C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{xn}滿足x1=1,x2=λ,并且$\frac{{x}_{n+1}}{{x}_{n}}$=λ$\frac{{x}_{n}}{{x}_{n-1}}$(λ為非零常數(shù),n=2,3,4,…).
(Ⅰ)若x1,x3,x5成等比數(shù)列,求λ的值;
(Ⅱ)設(shè)0<λ<1,常數(shù)k∈N*,證明$\frac{{{x_{1+k}}}}{x_1}+\frac{{{x_{2+k}}}}{x_2}+…+\frac{{{x_{n+k}}}}{x_n}<\frac{λ^k}{{1-{λ^k}}}(n∈{{N}^*})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+t}\\{y=t-3}\end{array}}\right.$(t為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若直線l與曲線C相交于A、B兩點(diǎn),求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,輸出的S值為( 。
A.15B.105C.245D.945

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求經(jīng)過三點(diǎn)A(1,4),B(-2,3),C(4,-5)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a,b,x,y∈(0,+∞),且ab=4,x+y=1.
求證:(ax+by)(bx+ay)≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若直線y=x-b與曲線$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))有兩個不同的公共點(diǎn),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績和物理成績之間的關(guān)系,隨機(jī)抽取高二年級20名學(xué)生某次考試成績(百分制)如表所示:
序號1234567891011121314151617181920
數(shù)學(xué)成績9575809492656784987167936478779057837283
物理成績9063728791715882938177824885699161847886
若數(shù)學(xué)成績90分(含90分)以上為優(yōu)秀,物理成績85(含85分)以上為優(yōu)秀.有多少把握認(rèn)為學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系( 。
A.99.5%B.99.9%C.97.5%D.95%

查看答案和解析>>

同步練習(xí)冊答案