A. | [-$\frac{π}{2}$,$\frac{π}{2}$] | B. | [-π,0] | C. | [-$\frac{2π}{3}$,$\frac{2π}{3}$] | D. | [$\frac{π}{3}$,$\frac{4π}{3}$] |
分析 由條件利用正弦函數(shù)的單調(diào)性,求得函數(shù)y=sin(x+$\frac{π}{6}$)的一個(gè)遞減區(qū)間.
解答 解:對(duì)于函數(shù)y=sin(x+$\frac{π}{6}$),
令2kπ+$\frac{π}{2}$≤x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,求得2kπ+$\frac{π}{3}$≤x≤2kπ+$\frac{4π}{3}$,k∈Z,
可得函數(shù)的減區(qū)間為[2kπ+$\frac{π}{3}$,2kπ+$\frac{4π}{3}$],k∈Z,結(jié)合所給的選項(xiàng),
故選:D.
點(diǎn)評(píng) 本題主要考查正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=sin(x-$\frac{π}{4}$) | B. | f(x)=-sin(x-$\frac{π}{4}$) | C. | f(x)=-cos(x+$\frac{π}{4}$) | D. | f(x)=cos(x-$\frac{π}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 8 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2n | B. | 2n+1 | C. | 2n+1-1 | D. | 2n+1-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com