1.已知f′(x)是定義在R上的函數(shù)f(x)的導(dǎo)數(shù),滿足f′(x)+2f(x)>0,且f(-1)=0,則f(x)<0的解集為(  )
A.(-∞,-1)B.(-1,1)C.(-∞,0)D.(-1,+∞)

分析 設(shè)g(x)=e2xf(x),求導(dǎo),判斷出g(x)在R上為增函數(shù),利用單調(diào)性即可求出不等式的解集.

解答 解:設(shè)g(x)=e2xf(x),
∴g′(x)=2xe2xf(x)+e2xf′(x)=e2x(f′(x)+2f(x))>0,
∴g(x)在R上為增函數(shù),
∵f(x)<0=f(-1)
∴g(x)<g(-1)
∴x<-1,
故選:A.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的應(yīng)用,關(guān)鍵是構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知$\frac{zi}{i-1}=i+1$,則復(fù)數(shù)z在復(fù)平面上所對(duì)應(yīng)的點(diǎn)位于(  )
A.實(shí)軸上B.虛軸上C.第一象限D.第二象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若曲線x2+y2-2x-8y+16=0與曲線x2+y2-6x-4y+12=0關(guān)于直線x+by+c=0對(duì)稱,則bc=( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若x,y滿足約束條件$\left\{\begin{array}{l}{x+1≤0}\\{x-y+2≥0}\\{x+2y+2≥0}\end{array}\right.$且目標(biāo)函數(shù)z=ax-y取得最大值的點(diǎn)有無(wú)數(shù)個(gè),則z的最小值等于(  )
A.-2B.-$\frac{3}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若隨機(jī)變量Y~B(5,$\frac{1}{4}$),則EY為( 。
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.$\frac{5}{4}$D.-$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,且b2-ac=a2
(1)求證:sinB=sin2A;
(2)若A=$\frac{π}{12}$,a=1,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在△ABC中,a、b、c分別為∠A、∠B、∠C的對(duì)邊,若a=2$\sqrt{3}$,sin$\frac{C}{2}$cos$\frac{C}{2}$=$\frac{1}{4}$,sinBsinC=cos2$\frac{A}{2}$,求∠A、∠B及b、c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若f(n)為n2+1(n∈N*)的各位數(shù)字之和,如142+1=197,1+9+7=17,則f(14)=17;記f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,則f2016(8)=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知拋物線y=x2的焦點(diǎn)為F,過(guò)點(diǎn)(0,2)作直線l與拋物線交于A,B兩點(diǎn),點(diǎn)F關(guān)于直線OA的對(duì)稱點(diǎn)為C,則四邊形OCAB面積的最小值為( 。
A.2$\sqrt{3}$B.$\sqrt{3}$C.$\frac{3}{2}$D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案