16.若a>b,則下列不等式正確的是( 。
A.a+c<b+cB.a-c>b-cC.ac2>bc2D.$\frac{a}{c}$>$\frac{c}$

分析 根據(jù)不等式的性質(zhì)可以判斷A,B的正誤,舉出反例可判斷CD正誤

解答 解:對(duì)于A,根據(jù)不等式的性質(zhì)可知,不正確
對(duì)于B∵a>b,
∴a-c>b-c,故B正確,
對(duì)于C,當(dāng)c=0時(shí)不成立,
對(duì)于D,若c<0則不成立
故選:B

點(diǎn)評(píng) 本題考查了不等式的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.甲、乙兩支籃球隊(duì)賽季總決賽采用7場4勝制,每場必須分出勝負(fù),場與場之間互不影響,只要有一對(duì)獲勝4場就結(jié)束比賽.現(xiàn)已比賽了4場,且甲籃球隊(duì)勝3場,已知甲球隊(duì)第5,6場獲勝的概率均為$\frac{3}{5}$,但由于體力原因,第7場獲勝的概率為$\frac{2}{5}$.
(1)求甲對(duì)以4:3獲勝的概率;
(2)設(shè)X表示決出冠軍時(shí)比賽的場數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在正方體ABCD-A1B1C1D1中,BA1與平面AA1C1C所成的角等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,E,F(xiàn)分別是BC,PC的中點(diǎn),H是PD上的動(dòng)點(diǎn),EH與平面PAD所成的角為θ.
(1)求證:平面AEF⊥平面PAD;
(2)求當(dāng)θ取最大值為$\frac{π}{4}$時(shí),二面角E-AF-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若a<b<0,則以下結(jié)論正確的是( 。
A.a2<ab<b2B.a2<b2<abC.a2>ab>b2D.a2>b2>ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在圓內(nèi)接梯形ABCD中,AB∥CD.過點(diǎn)A作圓的切線與CB的延長線交于點(diǎn)E,若AB=AD=3,BE=2,
(1)求證:梯形ABCD為等腰梯形;
(2)求弦BD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)三個(gè)互不相等的數(shù)a,b,c成等比數(shù)列(a<b<c).其積為27,又a,b,c-4成等差數(shù)列,求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=x2-2x+alnx.
(Ⅰ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求實(shí)數(shù)a的取值范圍;
(Ⅱ)證明:f(x2)>-$\frac{3+2ln2}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,且短軸長為2.
(1)求橢圓的方程;
(2)若直線l:y=x+$\sqrt{2}$與橢圓交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求△AOB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案