10.將表的分針撥慢10分鐘,則分針轉(zhuǎn)動的角的弧度數(shù)是$\frac{π}{3}$.

分析 由題意可得分針逆時針旋轉(zhuǎn)60°,化為弧度制得答案.

解答 解:將表的分針撥慢10分鐘,即逆時針旋轉(zhuǎn)$360°×\frac{1}{6}=60°$,
化為弧度為60°×$\frac{π}{180}$=$\frac{π}{3}$.
故答案為:$\frac{π}{3}$.

點評 本題考查象限角及軸線角,考查了角度制與弧度制的互化,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知實數(shù)x.y滿足條件$\left\{\begin{array}{l}{y≤x}\\{3y≥x}\\{x+y≤4}\end{array}\right.$,且z=-2x+y,則z的最小值是( 。
A.5B.-2C.2D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若實數(shù)a,b,c,d滿足|b+a2-4lna|+|2c-d+2|=0,則(a-c)2+(b-d)2的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=$\sqrt{1-x}$+$\frac{1}{{\sqrt{x+3}}}$的定義域為( 。
A.(-∞,1]B.(-3,1]C.[-3,1]D.(-3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.AF是圓O的直徑,B,C是圓上兩點,AB與AC的延長線分別交過點F的切線于點D,E.求證:
(I)B,C,D,E四點共圓;
(II)AB•AD=AC•AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若a+a-1=3,則$\frac{{a}^{\frac{1}{2}}+{a}^{-\frac{1}{2}}}{{a}^{\frac{1}{2}}-{a}^{-\frac{1}{2}}}$的值為$±\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知正方體ABCD-A1B1C1D1中,E為側(cè)面BCC1B1的中心.若$\overrightarrow{AE}$=z$\overrightarrow{A{A}_{1}}$+x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,則x+y+z的值為(  )
A.1B.$\frac{3}{2}$C.2D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線y2+$\frac{x^2}{m}$=1的一個焦點與拋物線x2=8y的焦點相同,則此雙曲線的方程為( 。
A.$\frac{x^2}{3}-{y^2}=1$B.y2-x2=1C.y2-x2=1D.${y^2}-\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知:正數(shù)x,y.
(1)求證:x3+y3≥x2y+y2x;
(2)若$\frac{x}{y^2}+\frac{y}{x^2}≥\frac{m}{2}(\frac{1}{x}+\frac{1}{y})$恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案