4.在△ABC中,角A,B,C所對的邊分別為$a,b,c,b=\sqrt{7},c=1,B={120°}$
(1)求a;
(2)求△ABC的面積.

分析 (1)利用余弦定理即可得出.
(2)利用三角形面積計算公式即可得出.

解答 解:(1)由余弦定理可得:b2=a2+c2-2accos120°,即a2+a-6=0,a>0,解得a=2.
(2)$S=\frac{1}{2}$acsinB=$\frac{1}{2}×2×1×sin12{0}^{°}$=$\frac{\sqrt{3}}{2}$.

點評 本題考查了余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知f(x)=$\frac{π}{2}$+cosx,則f′($\frac{π}{2}$)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{x+1,x<0}\end{array}\right.$ 則f(x)>-1的解集為( 。
A.(-2,+∞)B.(-2,0)C.(-2,0)∪($\frac{1}{e}$,+∞)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{$\frac{n}{{2}^{n}}$}的前n項和為Sn,則Sn=2-$\frac{2+n}{{2}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=sinxcosx+$\frac{\sqrt{3}}{2}$cos2x的最小正周期和振幅分別是π,1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.命題p為真命題,命題q為假命題,則命題p∨q是真命題.(選填“真”或“假”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列各式中不等于n!的是( 。
A.$\frac{1}{n+1}$A${\;}_{n+1}^{n+1}$B.A${\;}_{n}^{n}$C.nA${\;}_{n-1}^{n-1}$D.${A}_{n+1}^{n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若等差數(shù)列{an}的前n項和為Sn,a1=a,n≥2時Sn2=3n2an+S2n-1,an≠0,n∈N*
(Ⅰ)求a的值;
(Ⅱ)設(shè)數(shù)列{bn}的前n項和為Tn,且bn=$\frac{1}{{({{a_n}-1})({{a_n}+2})}}$,求證:Tn<$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若(ax2+bx-16的展開式中x3項的系數(shù)為20,則a2+b2的最小值為2.

查看答案和解析>>

同步練習(xí)冊答案