7.已知復(fù)數(shù)z=m2-2m-3+(m-3)i,其中m∈R.
(1)若m=2,求$\overline{z}$+|z|;
(2)若z為純虛數(shù),求實數(shù)m的值.

分析 (1)利用復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義、模的計算公式即可得出;
(2)利用純虛數(shù)的定義即可得出.

解答 解:(1)m=2時,復(fù)數(shù)z=m2-2m-3+(m-3)i=-3-i.
∴$\overline{z}$=-3+i,|z|=$\sqrt{10}$.
∴$\overline{z}$+|z|=-3+i+$\sqrt{10}$=$\sqrt{10}$-3+i.
(2)∵z為純虛數(shù),
∴$\left\{\begin{array}{l}{{m}^{2}-2m-3=0}\\{m-3≠0}\end{array}\right.$,解得m=-1.

點評 本題考查了復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義、模的計算公式、純虛數(shù)的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知△ABC中,a=3,b=3$\sqrt{3}$,A=30°,則B等于( 。
A.30°B.30°或150°C.60°D.60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=1,AC=$\sqrt{3}$,AA1=4,點D、E、F分別是棱BC、CC1、AA1的中點.
(Ⅰ)求證:FB∥平面ADE;
(Ⅱ)求三棱錐E-ADB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知a∈R,那么“a>1”是“a2>1”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=x2-3x,則$\underset{lim}{t→0}$$\frac{f(2)-f(2-3t)}{t}$的值為( 。
A.-2B.$\frac{1}{3}$C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.化簡:$\frac{cos(3π-θ)cot(π+θ)tan(-θ)}{sin(π-θ)cot(3π-θ)}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,扇形的半徑為r cm,周長為20cm,問扇形的圓心角α等于多少弧度時,這個扇形的面積最大,并求出扇形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(sinx,$\frac{3}{4}$),$\overrightarrow$=(cosx,-1).
(1)當$\overrightarrow{a}$∥$\overrightarrow$時,求cos2x的值;
(2)設(shè)函數(shù)f(x)=2($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$,求當0≤x≤$\frac{π}{2}$時,函數(shù)f(x)的最大值及對應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知y=f(x)+2x2是奇函數(shù),且f(1)=2,若g(x)=f(x)+2x,則g(-1)=-8.

查看答案和解析>>

同步練習(xí)冊答案