分析 (1)由${∁}_{9}^{4}={∁}_{9}^{5}$=126,${∁}_{10}^{5}$=252,${∁}_{11}^{5}={∁}_{11}^{6}$=462,利用第(2)、(3)題的結(jié)論可知:n=10,設(shè)(x+2)10展開(kāi)式中系數(shù)最大的項(xiàng)是Tr+1=${∁}_{10}^{r}$x10-r2r.(r=0,1,2,…,10),則$\left\{\begin{array}{l}{{∁}_{10}^{r}•{2}^{r}≥{∁}_{10}^{r-1}•{2}^{r-1}}\\{{∁}_{10}^{r}•{2}^{r}≥{∁}_{10}^{r+1}•{2}^{r+1}}\end{array}\right.$,解出即可得出.
(2)若n為奇數(shù),則n+1為偶數(shù),an=${∁}_{n}^{\frac{n-1}{2}}$=${∁}_{n}^{\frac{n+1}{2}}$,an+1=${∁}_{n+1}^{\frac{n+1}{2}}$,利用組合數(shù)的性質(zhì)可得an+1>an.若n為偶數(shù),則n+1為奇數(shù),an=${∁}_{n}^{\frac{n}{2}}$,an+1=${∁}_{n+1}^{\frac{n}{2}}$=${∁}_{n+1}^{\frac{n}{2}+1}$,同理可得:an+1>an,即可證明數(shù)列{an}單調(diào)遞增.
(3)數(shù)列{C${\;}_{n}^{k}$}(k=0,1,2,…,n)離首末兩端等距離的項(xiàng)相等,且距離越遠(yuǎn)值越大.作差如下:${∁}_{n}^{k+1}-{∁}_{n}^{k}$=$\frac{n!}{(k+1)!(n-k-1)!}$-$\frac{n!}{k!(n-k)!}$=$\frac{n!}{(k+1)!(n-k)!}$(n-1-2k).即可得出:當(dāng)k<$\frac{n-1}{2}$時(shí),${∁}_{n}^{k}$<${∁}_{n}^{k+1}$;當(dāng)k>$\frac{n-1}{2}$時(shí),${∁}_{n}^{k}$>${∁}_{n}^{k+1}$,其中k=0,1,2,…,n-1.
解答 解:(1)∵${∁}_{9}^{4}={∁}_{9}^{5}$=126,${∁}_{10}^{5}$=252,${∁}_{11}^{5}={∁}_{11}^{6}$=462,
由第(2)、(3)題的結(jié)論可知:n=10,
設(shè)(x+2)10展開(kāi)式中系數(shù)最大的項(xiàng)是Tr+1=${∁}_{10}^{r}$x10-r2r.(r=0,1,2,…,10),
則$\left\{\begin{array}{l}{{∁}_{10}^{r}•{2}^{r}≥{∁}_{10}^{r-1}•{2}^{r-1}}\\{{∁}_{10}^{r}•{2}^{r}≥{∁}_{10}^{r+1}•{2}^{r+1}}\end{array}\right.$,(其中r=1,2,…,9),即$\left\{\begin{array}{l}{\frac{10!•{2}^{r}}{r!•(10-r)!}≥\frac{10!•{2}^{r-1}}{(r-1)!(11-r)!}}\\{\frac{10!•{2}^{r}}{r!(10-r)!}≥\frac{10!•{2}^{r+1}}{(r+1)!•(9-r)!}}\end{array}\right.$,
得$\left\{\begin{array}{l}{r≤\frac{22}{3}}\\{r≥\frac{19}{3}}\end{array}\right.$,(r=1,2,…,9),∴r=7,
展開(kāi)式中系數(shù)最大的項(xiàng)是T8=${∁}_{10}^{7}•{2}^{7}×{x}^{3}$=15360x3.
(2)若n為奇數(shù),則n+1為偶數(shù),an=${∁}_{n}^{\frac{n-1}{2}}$=${∁}_{n}^{\frac{n+1}{2}}$,an+1=${∁}_{n+1}^{\frac{n+1}{2}}$,
∴an+1=${∁}_{n+1}^{\frac{n+1}{2}}$=${∁}_{n}^{\frac{n-1}{2}}$+${∁}_{n}^{\frac{n+1}{2}}$>an.
若n為偶數(shù),則n+1為奇數(shù),an=${∁}_{n}^{\frac{n}{2}}$,an+1=${∁}_{n+1}^{\frac{n}{2}}$=${∁}_{n+1}^{\frac{n}{2}+1}$,
∴an+1=${∁}_{n+1}^{\frac{n}{2}}$=${∁}_{n}^{\frac{n}{2}}$+${∁}_{n}^{\frac{n}{2}-1}$>an,
綜上可知:數(shù)列{an}單調(diào)遞增.
(3)數(shù)列{C${\;}_{n}^{k}$}(k=0,1,2,…,n)離首末兩端等距離的項(xiàng)相等,且距離越遠(yuǎn)值越大.
證明如下:${∁}_{n}^{k+1}-{∁}_{n}^{k}$=$\frac{n!}{(k+1)!(n-k-1)!}$-$\frac{n!}{k!(n-k)!}$=$\frac{n!}{(k+1)!(n-k)!}$(n-1-2k).
當(dāng)k<$\frac{n-1}{2}$時(shí),${∁}_{n}^{k}$<${∁}_{n}^{k+1}$;當(dāng)k>$\frac{n-1}{2}$時(shí),${∁}_{n}^{k}$>${∁}_{n}^{k+1}$,其中k=0,1,2,…,n-1.
若n為奇數(shù),${∁}_{n}^{0}$<${∁}_{n}^{1}$<${∁}_{n}^{2}$<…<${∁}_{n}^{\frac{n-3}{2}}$<${∁}_{n}^{\frac{n-1}{2}}$,${∁}_{n}^{\frac{n+1}{2}}$>${∁}_{n}^{\frac{n+3}{2}}$>…>${∁}_{n}^{n-1}$>${∁}_{n}^{n}$,
若n為偶數(shù),${∁}_{n}^{0}$<${∁}_{n}^{1}$<${∁}_{n}^{2}$<…<${∁}_{n}^{\frac{n-2}{2}}$<${∁}_{n}^{\frac{n}{2}}$,${∁}_{n}^{\frac{n}{2}}$>${∁}_{n}^{\frac{n+2}{2}}$>…>${∁}_{n}^{n-1}$>${∁}_{n}^{n}$.
點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的通項(xiàng)公式及其展開(kāi)式的系數(shù)的性質(zhì)、組合數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | r2<r1<0 | B. | 0<r2<r1 | C. | r2<0<r1 | D. | r2=r1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 抽簽法 | B. | 隨機(jī)數(shù)表法 | C. | 分層抽樣法 | D. | 系統(tǒng)抽樣法 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | R | B. | (-∞,0) | C. | (1,+∞) | D. | (-∞,0)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com