13.已知i為虛數(shù)單位,(1+2i)z1=1+i,z2=(1+i)2+i3,則|z1+$\overrightarrow{{z}_{2}}$|的值為( 。
A.$\frac{3\sqrt{2}}{5}$B.$\frac{2\sqrt{3}}{5}$C.$\frac{3\sqrt{5}}{5}$D.$\frac{4}{5}$

分析 把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)求得z1,z2,進(jìn)一步求得z1+$\overrightarrow{{z}_{2}}$,再由復(fù)數(shù)模的計(jì)算公式得答案.

解答 解:∵(1+2i)z1=1+i,
∴${z}_{1}=\frac{1+i}{1+2i}=\frac{(1+i)(1-2i)}{(1+2i)(1-2i)}=\frac{3-i}{5}=\frac{3}{5}-\frac{i}{5}$,
又z2=(1+i)2+i3=i,
∴$\overline{{z}_{2}}=-i$,則|z1+$\overrightarrow{{z}_{2}}$|=|$\frac{3}{5}-\frac{i}{5}-i$|=|$\frac{3}{5}-\frac{6}{5}i$|=$\sqrt{(\frac{3}{5})^{2}+(\frac{6}{5})^{2}}=\frac{3\sqrt{5}}{5}$.
故選:C.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,已知正方體ABCD-A1B1C1D1棱長(zhǎng)為4,點(diǎn)H在棱AA1上,且HA1=1.在側(cè)面BCC1B1內(nèi)作邊長(zhǎng)為1的正方形EFGC1,P是側(cè)面BCC1B1內(nèi)一動(dòng)點(diǎn),且點(diǎn)P到平面CDD1C1距離等于線段PF的長(zhǎng).則當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),
(1)P的軌跡方程是2x-1=(z-3)2,
(2)|HP|2的最小值是22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為$\frac{\sqrt{3}}{2}$,且經(jīng)過點(diǎn)M(4,1).直線l:y=x+m交橢圓于A,B兩不同的點(diǎn).
(1)求橢圓方程;
(2)若直線l與橢圓有兩個(gè)不同的交點(diǎn),求m的取值范圍;  
(3)若直線l不過點(diǎn)M,求證:直線MA,MB與x軸圍成等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知正方形ABCD的邊長(zhǎng)為2,直線MN過正方形的中心O交線段AD,BC于M,N兩點(diǎn),若點(diǎn)P滿足$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),則$\overrightarrow{PM}$•$\overrightarrow{PN}$的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,四棱錐P-ABCD底面為一直角梯形,AB⊥AD,CD⊥AD,CD=2AB,PA⊥面ABCD,E為PC中點(diǎn)
(Ⅰ)求證:平面PDC⊥平面PAD
(Ⅱ)求證:BE∥平面PAD
(Ⅲ) 假定PA=AD=CD,求二面角E-BD-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=lnx-$\frac{1}{2}$a(x-1)(a∈R)).
(1)若a=-4,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若x∈(1,+∞),函數(shù)f(x)的圖象始終在x軸的下方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在單位正方體A1B1C1D1-ABCD中,E,F(xiàn),G分別是AD,BC1,A1B的中點(diǎn).
(1)求證:EF∥平面C1CDD1
(2)求證:EG⊥平面A1BC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合A={x|y=$\sqrt{2-x}$},B={y|y=ln(3-x)},則A∩B( 。
A.{x|x≤2}B.{x|x<3}C.{x|2<x≤3}D.{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=f(x)+2x是偶函數(shù),g(x)=f(x)+x2,g(1)=3,則g(-1)=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案