10.如圖,該曲線表示一人騎自行車離家的距離與時間的關(guān)系.騎車者9時離開家,15時回家.根據(jù)這個曲線圖,請你回答下列問題:
(1)最初到達離家最遠的地方是什么時間?離家多遠?
(2)何時開始第一次休息?休息多長時間?
(3)第一次休息時,離家多遠?
(4)11:00到12:00他騎了多少千米?
(5)他在9:00-10:00和10:00-10:30的平均速度分別是多少?
(6)他在哪段時間里停止前進并休息用午餐?

分析 根據(jù)函數(shù)的圖象的意義進行作答.

解答 解:(1)最初到達離家最遠的地方是12時,離家30千米.
(2)第一次休息時間為10:30,休息時間為30分鐘.
(3)第一次休息時離家17千米.
(4)11:00到12:00他騎了30-17=13千米.
(5)9:00-10:00的平均速度為$\frac{10}{1}$=10千米/時,
10:00-10:30的平均速度為$\frac{17-10}{0.5}$=14千米/時.
(6)在12:00-13:00停止前進并休息用午餐.

點評 本題考查了函數(shù)的圖象的意義,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知空間四點A、B、C、D確定惟一一個平面,那么這四個點中( 。
A.必定只有三點共線B.必有三點不共線
C.至少有三點共線D.不可能有三點共線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知△ABC中,點D在BC邊上,且$\overrightarrow{CD}$=2$\overrightarrow{DB}$,$\overrightarrow{AD}$=r$\overrightarrow{AB}$+s$\overrightarrow{AC}$,則r+s的值( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.-3D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$在正方形網(wǎng)格中的位置如圖所示,若$\overrightarrow c$=λ$\overrightarrow a$+μ$\overrightarrow b$(λ,μ∈R),則$\frac{λ}{μ}$=( 。
A.2B.4C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知集合A={x|1-a≤x≤a+1},B={x|x2-3x-4≥0},若A∩B=∅,則實數(shù)a的取值范圍為( 。
A.(-∞,-1)B.(-∞,2)C.(0,2)D.[0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.計算:
(1)$\root{3}{{{{(-3)}^3}}}$-${(\frac{1}{2})^0}$+${0.25^{\frac{1}{2}}}$×${(-\frac{1}{{\sqrt{2}}})^{-4}}$
(2)計算:$\frac{3}{4}$lg25+${2^{{{log}_2}3}}$+lg2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在△ABC中,a,b,c分別為三內(nèi)角A,B,C所對的邊,若B=2A,則b:2a的取值范圍是(  )
A.(-2,2)B.(0,2)C.(-1,1)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=$\sqrt{({m^2}-1){x^2}-(1-m)x+1}$的值域為[0.+∞),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.組數(shù)據(jù)2,x,4,6,10的平均值是5,則此組數(shù)據(jù)的方差是8.

查看答案和解析>>

同步練習冊答案