19.某單位要在4名員工(含甲、乙兩人)中隨機(jī)選2名到某地出差,則甲、乙兩人中,至少有一人被選中的概率是$\frac{5}{6}$.

分析 甲、乙兩人至少有一人被選中的對立事件是甲、乙同學(xué)都沒被選中,由此利用對立事件概率計算公式能求出結(jié)果.

解答 解:從甲、乙、丙、丁四名同學(xué)中隨機(jī)的選取兩名代表參加比賽,
基本事件總數(shù)n=${C}_{4}^{2}$=6,
甲、乙兩人至少有一人被選中的概率:P=1-$\frac{{C}_{2}^{2}}{{C}_{4}^{2}}$=$\frac{5}{6}$.
故答案為$\frac{5}{6}$.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對立事件概率計算公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.給出如下四個命題:

(1)圖①中的陰影部分可用集合{(x,y)|x2+y2-2y<0}
(2)設(shè)兩個正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0曲線如圖②所示,則μ1<μ2,σ1<σ2
(3)已知邊長為2的等邊三角形ABC,過C作BC的垂線l,如圖③,則將△ABC繞l旋轉(zhuǎn)一周形成的曲面所圍成的幾何體的體積是2$\sqrt{3}$π
(4)執(zhí)行如圖④所示的程序框圖,輸出S的值是-$\frac{1}{2}$.
其中正確命題的序號是(1)(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=e1+|x|-$\frac{1}{{1+{x^4}}}$,則使得f(2x)<f(1-x)成立的x的取值范圍是( 。
A.$(-1,\frac{1}{3})$B.$(-∞,\frac{1}{3})$C.(-∞,-1)D.$(-\frac{1}{3},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,sinB+sinC=$\frac{1}{R}$(其中R為△ABC的外接圓的半徑)且△ABC的面積S=a2-(b-c)2
(1)求tanA的值;
(2)求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知命題p:方程x2-2ax-1=0有兩個實數(shù)根;命題q:函數(shù)f(x)=x+$\frac{4}{x}$的最小值為4.給出下列命題:
①p∧q;②p∨q;③p∧¬q;④¬p∨¬q.
則其中真命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)U=R,A={x|x<2},B={x|x>m},若∁UA⊆B,則實數(shù)m的取值范圍是(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若正方體的棱長為$\sqrt{2}$,則以該正方體各個面的中心為頂點的凸多面體的表面積為(  )
A.$\frac{{\sqrt{2}}}{3}$B.$2\sqrt{3}$C.$\sqrt{3}$D.$\frac{{\sqrt{2}}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)f(x)=-|x|,a=f(loge$\frac{1}{π}$),b=f(logπ$\frac{1}{e}$),c=f(log${\;}_{\frac{1}{e}}$$\frac{1}{{π}^{2}}$),則下述關(guān)系式正確的是(  )
A.a>b>cB.b>c>aC.c>a>bD.b>a>c

查看答案和解析>>

同步練習(xí)冊答案