關(guān)于直線m,n與平面α,β,γ有以下三個(gè)命題,其中真命題有( 。
(1)若m∥α,n∥β,且α∥β則m∥n
(2)若α∩β=m,α⊥γ,β⊥γ則m⊥γ(3)若m⊥α,n⊥β且α⊥β則m⊥n.
A、1個(gè)B、2個(gè)C、3個(gè)D、0個(gè)
考點(diǎn):空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用線面平行、面面平行的性質(zhì)以及判定定理對四個(gè)選項(xiàng)分別分析解答選擇.
解答: 解:對于(1)m∥α,n∥β,且α∥β,m,n的位置關(guān)系是平行或者異面;故m∥n錯(cuò)誤;
對于(2)若α∩β=m,α⊥γ,β⊥γ,利用面面垂直的性質(zhì),在平面γ分別做a⊥β,b⊥α,則a⊥m,b⊥m,則m⊥γ;所以(2)正確;
對于(3)因?yàn)棣痢挺,在平面α做a垂直交線,則a⊥β,m⊥a又n⊥β則a∥n,則m⊥n;故(3)正確.
故選:B.
點(diǎn)評(píng):本題考查了線面平行和面面平行的性質(zhì)定理和判定定理,關(guān)鍵是熟練有關(guān)的定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形ABCD的兩對角線交于點(diǎn)M(2,0),AB邊所在直線方程為x-3y-6=0,AD邊所在直線為3x+y+2=0,
則矩形ABCD外接圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱柱ABC-A′B′C′的主視圖和側(cè)左視圖如圖所示.設(shè)△ABC的中心分別是O,O′,現(xiàn)將此三棱柱繞直線OO′旋轉(zhuǎn),在旋轉(zhuǎn)過程中對應(yīng)的俯視圖的面積為S,則S的最大值為( 。
A、8B、4C、12D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,AP=AB=2,E在PD上,且PE=2ED,F(xiàn)是PC的中點(diǎn),
(1)證明:平面PBD⊥平面PAC;
(2)求證:BF∥平面ACE;
(3)求三棱錐D-BCF的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一張桌子上擺放有若干個(gè)大小、形狀完全相同的碟子,現(xiàn)從三個(gè)方向看,三種視圖如下所示,則這張桌子上碟子的個(gè)數(shù)為( 。
A、11B、12C、13D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|log2(6x+12)≥log2(x2+3x+2),x∈R},B={x|2 x2-m<4x,x∈R}
(1)當(dāng)m=3時(shí),求A∩(∁RB).
(2)若A∩B={x|-1<x<4},求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2AB=2BC.BC∥AD,AB⊥AD.
(1)若點(diǎn)E為PD的中點(diǎn),求證:CE∥平面PAB;
(2)在平面PAC內(nèi),AF⊥PC.求證:AF⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P為拋物線y2=2x上的任意一點(diǎn),求點(diǎn)P到直線x-2y+4=0的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

極坐標(biāo)系中,圓ρ2+2ρsinθ=3的圓心到直線ρsinθ+ρcosθ-1=0的距離是
 

查看答案和解析>>

同步練習(xí)冊答案