6.如圖所示,圓O上的弦AB不為直徑,DA切圓O于點A,點E在BA的延長線上且DE∥AC,點C為BD與圓交點,若AE=3,DE=6,CD=2,則AD=4.

分析 利用圓的弦切角定理與平行線的性質可證明△ADE∽△DBE.解得AB,再利用平行線的性質可得BC,利用切線長定理即可得出.

解答 解:∵DA切圓O于點A,∴∠DAC=∠B.
∵DE∥AC,∴∠DAC=∠ADE.
∴∠ADE=∠B.
又∠AED公用,
∴△ADE∽△DBE.
∴$\frac{DE}{BE}=\frac{AE}{DE}$,即$\frac{6}{AB+3}$=$\frac{3}{6}$,解得AB=9.
由DE∥AC,∴$\frac{BC}{CD}$=$\frac{BA}{AE}$,∴$\frac{BC}{2}=\frac{9}{3}$,解得BC=6.
∵DA切圓O于點A,∴AD2=DC•DB=2×(2+6)=16,
解得AD=4.
故答案為:4.

點評 本題考查了圓的弦切角定理與平行線的性質、切線長定理、三角形相似的判定定理,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.已知直線l經(jīng)過直線2x+y-5=0與x-2y=0的交點,且點A(5,0)到l的距離為3,則直線l的方程為4x-3y-5=0或x=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知f(x)是定義在區(qū)間[1,4]上的函數(shù),若對[1,4]上的任意的兩個自變量x1,x2,總有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,則不等式f(x+2)>f(3-2x)的解集為[-$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知一個幾何體的三視圖如圖所示,則該幾何體的體積是$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.正三棱柱的左視圖如圖所示,則該正三棱柱的體積為(  )
A.$\sqrt{3}$B.2C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知圓M:(x-1)2+(y-1)2=4,直線l過點P(2,3)且與圓M交于A,B兩點,且|AB|=2$\sqrt{3}$.
(Ⅰ)求直線l方程;
(Ⅱ)設Q(x0,y0)為圓M上的點,求x02+y02的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知全集U={x|-3≤x<3,x∈Z},集合A={x|x2+2x-3=0},則∁UA={-2,-1,0,2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知{an}為等比數(shù)列,且an>0,a2a4+2a3a5+a4a6=9,那么a3+a5=( 。
A.3B.9C.12D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.下列說法中正確的是①②③
①設隨機變量X服從二項分布B(6,$\frac{1}{2}$),則P(X=3)=$\frac{5}{16}$
②已知隨機變量X服從正態(tài)分布N(2,σ2)  且P(X<4)=0.9,則P(0<X<2)=0.4
③${∫}_{-1}^{0}$$\sqrt{1-{x}^{2}}$dx=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx=$\frac{π}{4}$
④E(2X+3)=2E(X)+3,D(2X+3)=2D(X)+3.

查看答案和解析>>

同步練習冊答案