考點(diǎn):數(shù)列遞推式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)將a
n+1=a
n2+a
n-
化為:a
n+1+=
(an+)2,利用對(duì)數(shù)的運(yùn)算和等比數(shù)列的定義進(jìn)行證明,再由等比數(shù)列的通項(xiàng)公式求出數(shù)列{a
n}的通項(xiàng)公式;
(2)由a
n+1=a
n2+a
n-
得a
n2-
=a
n+1-a
n,代入已知的式子化簡(jiǎn)可得:
=
,再兩邊取倒數(shù)求出
b
n,利用裂項(xiàng)相消法求出數(shù)列{b
n}的前n項(xiàng)和S
n.
解答:
證明:(1)因?yàn)閍
n+1=a
n2+a
n-
(n∈N
*),所以a
n+1+=a
n2+a
n+
=
(an+)2,
則
=
=2,
又a
1=2,則lg(a
1+
)=lg
,
所以數(shù)列{lg(a
n+
)}是以lg
為首項(xiàng)、2為公比的等比數(shù)列,
則lg(a
n+
)=
lg•2n-1,所以a
n+
=
10lg•2n-1=
()2n-1則a
n=
()2n-1-;
解:(2)由a
n+1=a
n2+a
n-
得,a
n2-
=a
n+1-a
n,
則
=
=
•
=
•
,
所以
=
,即b
n=
-
,
所以數(shù)列{b
n}的前n項(xiàng)和S
n=(
-)+(
-)+…+(
-)
=
-=
-.
點(diǎn)評(píng):本題考查數(shù)列的遞推式,等比數(shù)列的定義、通項(xiàng)公式,對(duì)數(shù)的運(yùn)算,以及裂項(xiàng)相消法求出數(shù)列的前n項(xiàng)和,考查轉(zhuǎn)化思想和靈活變形能力.