A. | 1 | B. | 2 | C. | 4 | D. | 5 |
分析 設(shè)M(m,n),即有m2-n2=4,求出雙曲線的漸近線為y=±x,運(yùn)用點(diǎn)到直線的距離公式,結(jié)合勾股定理可得|ON|,化簡(jiǎn)整理計(jì)算即可得到所求值.
解答 解:設(shè)M(m,n),即有m2-n2=4,
雙曲線的漸近線為y=±x,
可得|MN|=$\frac{|m-n|}{\sqrt{2}}$,
由勾股定理可得|ON|=$\sqrt{|OM{|}^{2}-|MN{|}^{2}}$=$\sqrt{{m}^{2}+{n}^{2}-\frac{(m-n)^{2}}{2}}$=$\frac{|m+n|}{\sqrt{2}}$,
可得|ON|•|MN|=$\frac{|m+n|}{\sqrt{2}}$•$\frac{|m-n|}{\sqrt{2}}$=$\frac{|{m}^{2}-{n}^{2}|}{2}$=2.
故選:B.
點(diǎn)評(píng) 本題考查雙曲線的方程和性質(zhì),主要考查漸近線方程的運(yùn)用,注意點(diǎn)滿足雙曲線的方程,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:填空題
已知復(fù)數(shù),則復(fù)數(shù)的虛部為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 3$\sqrt{2}$ | D. | $\sqrt{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2}-1$ | D. | $\sqrt{3}-\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若m⊥n,n∥α,則m⊥α | B. | 若m∥α,n∥β,則m∥n | C. | 若α∥β,m?α,則m∥β | D. | 若m∥α,α⊥β,則m⊥α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $A_5^4$ | B. | 54 | C. | 45 | D. | 4×5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{13}{65}$ | B. | $\frac{15}{65}$ | C. | $\frac{48}{65}$ | D. | $\frac{63}{65}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com