考點:復合函數(shù)的單調(diào)性,函數(shù)單調(diào)性的判斷與證明,函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)函數(shù)的性質(zhì)分別求函數(shù)的定義域,奇偶性和單調(diào)性即可.
解答:
解:∵|1-x
2|≥0,∴函數(shù)的定義域為R,
∵f(-x)=
=
=f(x),
∴函數(shù)f(x)為偶函數(shù),
f(x)=
=
,
設u=|x
2-1|=
| x2-1, | x≥1或x≤-1 | -x2+1, | -1<x<1 |
| |
,對應的圖象如圖:
∵y=
為增函數(shù),
∴根據(jù)復合函數(shù)單調(diào)性之間的關系可得
當x≤-1或0≤x≤1上函數(shù)f(x)為減函數(shù),即函數(shù)的遞減區(qū)間為(-∞,-1],[0,1],
當x≥1或-1≤x≤0上函數(shù)f(x)為增函數(shù),即函數(shù)的遞增區(qū)間為[1,+∞),[-1,0]
點評:本題主要考查函數(shù)的性質(zhì),要求熟練掌握函數(shù)定義域,奇偶性和單調(diào)性的判斷,利用復合函數(shù)單調(diào)性之間的關系是解決本題的關鍵.