10.某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問(wèn)部分職工,根據(jù)被訪問(wèn)職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示).
(Ⅰ)求頻率分布表中①、②、③位置相應(yīng)數(shù)據(jù),并在答題紙上完成頻率分布直方圖;
組號(hào)分組頻數(shù)頻率
第1組[50,60)50.050
第2組[60,70)0.350
第3組[70,80)30
第4組[80,90)200.200
第5組[90,100]100.100
合計(jì)1.00
(Ⅱ)為進(jìn)一步了解情況,該企業(yè)決定在第3,4,5組中用分層抽樣抽取5名職工進(jìn)行座談,求第3,4,5組中各自抽取的人數(shù);
(Ⅲ)求該樣本平均數(shù)$\overline x$.

分析 (Ⅰ)根據(jù)頻率=$\frac{頻數(shù)}{樣本容量}$即可求出,并畫出相應(yīng)的圖象即可,
(Ⅱ)根據(jù)分層抽樣即可求出相對(duì)應(yīng)的人數(shù),
(Ⅲ)根據(jù)平均數(shù)的定義即可求出.

解答 解:(Ⅰ)5÷0.05=100,100×0.35=35,30÷100=0.030
故①35②0.300③100,其頻率分布直方圖如圖所示:

(Ⅱ)第3,4,5組共有60名學(xué)生,第3,4,5組的頻數(shù)之比為:30:20:10=3:2:1,
則第3組抽取的人數(shù)為$12×\frac{3}{6}=6$人;第4組為$12×\frac{2}{6}=4$人;第5組為$12×\frac{1}{6}=2$人.
(Ⅲ)樣本平均數(shù)$\overline x=55×0.05+65×0.35+75×0.3+85×0.2+95×0.1=74.5$

點(diǎn)評(píng) 本題考查了頻率分布直方圖和分層抽樣和平均數(shù)等有關(guān)問(wèn)題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若數(shù)據(jù)x1,x2,x3,x4,x5的方差為3,則數(shù)據(jù)2x1+1,2x2+1,2x3+1,2x4+1,2x5+1的方差為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖程序運(yùn)行的結(jié)果是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知半徑為1的圓O1是半徑為R的球O的一個(gè)截面,若球面上任一點(diǎn)到圓面O1的距離的最大值為$\frac{3R}{2}$,則球O的表面積為$\frac{16π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則φ的值為( 。
A.$\frac{π}{6}$B.$-\frac{π}{6}$C.$\frac{π}{3}$D.$-\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)甲、乙、丙三個(gè)乒乓球協(xié)會(huì)的分別選派3,1,2名運(yùn)動(dòng)員參加某次比賽,甲協(xié)會(huì)運(yùn)動(dòng)員編號(hào)分別為A1,A2,A3,乙協(xié)會(huì)編號(hào)為A4,丙協(xié)會(huì)編號(hào)分別為A5,A6,若從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽.
(1)用所給編號(hào)列出所有可能抽取的結(jié)果;
(2)求丙協(xié)會(huì)至少有一名運(yùn)動(dòng)員參加雙打比賽的概率;
(3)求參加雙打比賽的兩名運(yùn)動(dòng)員來(lái)自同一協(xié)會(huì)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.把一枚骰子連續(xù)擲兩次,已知在第一次拋出的是奇數(shù)點(diǎn)的情況下,第二次拋出的也是奇數(shù)點(diǎn)的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.某校為了了解學(xué)生對(duì)周末家庭作業(yè)量的態(tài)度,擬采用分層抽樣的方法分別從高一、高二、高三的高中生中隨機(jī)抽取一個(gè)容量為200的樣本進(jìn)行調(diào)查,已知從700名高一、高二學(xué)生中共抽取了140名學(xué)生,那么該校有高三學(xué)生300名.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)y=2x+$\sqrt{1-2x}$的最值為( 。
A.ymin=-$\frac{5}{4}$,ymax=$\frac{5}{4}$B.無(wú)最小值,ymax=$\frac{5}{4}$
C.ymin=-$\frac{5}{4}$,無(wú)最大值D.既無(wú)最大值也無(wú)最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案