A. | 1+$\sqrt{2}$ | B. | 1+2$\sqrt{2}$ | C. | 2+2$\sqrt{2}$ | D. | 2+$\sqrt{2}$ |
分析 利用雙曲線的焦半徑公式求出A(x1,y1),B(x2,y2)到F2的距離,根據(jù)以AB為直徑的圓與y軸相切,得到x1+x2=|AB|=$\sqrt{2}$(x1+x2)-2,代入坐標(biāo)后整理即可得到線段AB的長.
解答 解:雙曲線方程為x2-y2=1,F(xiàn)2($\sqrt{2}$,0),e=$\sqrt{2}$.
設(shè)A(x1,y1),B(x2,y2),由雙曲線的焦半徑公式得:|AF2|=ex1-a=$\sqrt{2}$x1-1,|BF2|=ex2-a=$\sqrt{2}$x2-1,
∵以AB為直徑的圓與y軸相切,∴x1+x2=|AB|=$\sqrt{2}$(x1+x2)-2
∴|AB|=x1+x2=$\frac{2}{\sqrt{2}-1}$=2+2$\sqrt{2}$
故選:C.
點評 本題考查雙曲線的性質(zhì),考查雙曲線的焦半徑公式,考查學(xué)生的計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{144}$+$\frac{y^2}{128}$=1 | B. | $\frac{x^2}{32}$+$\frac{y^2}{36}$=1 | C. | $\frac{x^2}{36}$+$\frac{y^2}{20}$=1 | D. | $\frac{x^2}{36}$+$\frac{y^2}{32}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sin2α | B. | cos2α | C. | tan2α | D. | cot2α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com