17.條件p:x<-1或x>1,條件q:x<-2,則p是q的( 。
A.充分但不必要條件B.充分且必要條件
C.必要但不充分條件D.既不充分也不必要條件

分析 由q⇒p,反之不成立,即可判斷出結論.

解答 解:x<-2,⇒x<-1或x>1,但是x<-1或x>1不能推出x<-2,
所以p是q的必要不充分條件.
故選:C.

點評 本題考查充要條件的判定,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.如圖(1),在三角形PCD中,AB為其中位線,且2BD=PC,若沿AB將三角形PAB折起,使∠PAD=θ,構成四棱錐P-ABCD,且$\frac{PC}{PF}$=$\frac{CD}{CE}$=2.

(1)求證:平面BEF⊥平面PAB;
(2)當異面直線BF與PA所成的角為$\frac{π}{3}$時,求折起的角度θ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ是參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,點A,B,C,D的極坐標分別為(2,$\frac{π}{6}$)、(2,$\frac{5π}{6}$)、(2,$\frac{7π}{6}$)、(2,$\frac{11π}{6}$)
(Ⅰ)求點A,B,C,D的直角坐標;
(Ⅱ)設P為C上任意一點,求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)y=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值與最小值之和為12,則實數(shù)a的值為( 。
A.$\sqrt{3}$B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點為F(2,0),且離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)已知O為坐標原點,過橢圓C的右頂點A作直線l與圓x2+y2=$\frac{8}{5}$相切并交橢圓C于另一點B,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設k是一個正整數(shù),(1+$\frac{x}{k}$)k的展開式中第四項的系數(shù)為$\frac{1}{16}$,記函數(shù)$y=\sqrt{8x-{x^2}}$與$y=\frac{1}{4}kx$的圖象所圍成的陰影部分為S,任取x∈[0,4],y∈[0,4],則點(x,y)恰好落在陰影區(qū)域S內的概率是(  )
A.$\frac{π}{4}$B.$\frac{1}{2}$C.$1-\frac{π}{4}$D.$\frac{π}{4}-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.如圖中,輸入m=111,n=74,則輸出結果是(  )
A.74B.37C.101D.202

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知矩陣$A=[{\begin{array}{l}1&a\\ 2&1\end{array}}]$的一個特征值λ=3所對應的一個特征向量$\overrightarrow e=[{\begin{array}{l}1\\ 1\end{array}}]$,求矩陣A的逆矩陣A-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設雙曲線$\frac{x^2}{m}+\frac{y^2}{n}=1$的離心率為2,且一個焦點與拋物線$y=\frac{1}{8}{x^2}$的焦點相同,則此雙曲線的方程為( 。
A.$\frac{x^2}{3}-{y^2}=1$B.${y^2}-\frac{x^2}{3}=1$C.$\frac{x^2}{12}-\frac{y^2}{4}=1$D.$\frac{y^2}{12}-\frac{x^2}{4}=1$

查看答案和解析>>

同步練習冊答案