4.已知$cosα=\frac{4}{5}$,$cos(α+β)=-\frac{5}{13}$,且α、β均為銳角,求cosβ.

分析 由已知可求范圍:α+β∈(0,π),利用同角三角函數(shù)基本關(guān)系式可求sinα,sin(α+β)的值,利用兩角差的余弦函數(shù)公式即可計(jì)算得解.

解答 解:∵銳角α,β滿足$cosα=\frac{4}{5}$,$cos(α+β)=-\frac{5}{13}$,∴α+β∈(0,π),
∴sinα=$\frac{3}{5}$,sin(α+β)=$\frac{12}{13}$,
則cosβ=cos(α+β-α)=cos(α+β)cosα+sin(α+β)sinα=$\frac{5}{13}×\frac{4}{5}$+$\frac{12}{13}×\frac{3}{5}$=$\frac{16}{65}$.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角差的余弦函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.以點(diǎn)(-1,4)為圓心,半徑為3的圓的方程是(x+1)2+(y-4)2=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某小區(qū)內(nèi)有一塊荒地ABCDE,今欲在該荒地上劃出一塊長(zhǎng)方形地面(不改變方位)進(jìn)行開(kāi)發(fā)(如圖所示),問(wèn)如何設(shè)計(jì)才能使開(kāi)發(fā)的面積最大?最大開(kāi)發(fā)面積是多少?(已知BC=210m,CD=240m,DE=300m,EA=180m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.過(guò)雙曲線C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1右焦點(diǎn)F作一直線(不平行于坐標(biāo)軸)交雙曲線于A、B兩點(diǎn),若點(diǎn)M滿足條件$\overrightarrow{MA}$+$\overrightarrow{MB}$=$\overrightarrow{0}$,O為坐標(biāo)原點(diǎn),則kAB•kOM的值為( 。
A.$\frac{5}{4}$B.-$\frac{5}{4}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知θ∈($\frac{3π}{4}$,$\frac{5π}{4}$),sin(θ-$\frac{π}{4}$)=$\frac{\sqrt{5}}{5}$.
(1)求sinθ的值;
(2)求cos(2θ+$\frac{2π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若點(diǎn)P(3,y)是角α終邊上的一點(diǎn),且滿足y<0,cosα=$\frac{3}{5}$,則tanα=(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.$\frac{4}{3}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在同一坐標(biāo)系中,直線l是函數(shù)f(x)=$\sqrt{1-{x}^{2}}$在(0,1)處的切線,若直線l也是g(x)=-x2+mx的切線,則m=±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知f(x)=f′($\frac{π}{4}$)sinx+cosx,則 f($\frac{π}{2}$)=-$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在Rt△ABC中,BC=2,∠C=90°,點(diǎn)D滿足$\overrightarrow{AD}=2\overrightarrow{DB}$,則$\overrightarrow{CB}•\overrightarrow{CD}$=$\frac{8}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案