函數(shù)y=(
1
3
|x-1|+4cos2
π
2
x-2(-3≤x≤5),則此函數(shù)的所有零點之和等于
 
考點:函數(shù)零點的判定定理
專題:計算題,作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:化簡y=(
1
3
|x-1|+4cos2
π
2
x-2=(
1
3
|x-1|+2cos(πx);從而得到其圖象關(guān)于x=1對稱,再化函數(shù)的零點個數(shù)即y=(
1
3
|x-1|與y=-2cos(πx)的交點的個數(shù),從而求到個數(shù),從而解得.
解答: 解:y=(
1
3
|x-1|+4cos2
π
2
x-2
=(
1
3
|x-1|+2cos(πx);
其圖象關(guān)于x=1對稱,
此函數(shù)的零點個數(shù)即y=(
1
3
|x-1|與y=-2cos(πx)的交點的個數(shù),
作y=(
1
3
|x-1|與y=-2cos(πx)的圖象如下,

由圖象可知,其共有8個零點,
又由其圖象關(guān)于x=1對稱知,
8個零點之和為8×1=8;
故答案為:8.
點評:本題考查了函數(shù)的零點與方程的根的關(guān)系,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法不正確的是( 。
A、命題“若x>0且y>0,則x+y>0”的否命題是假命題
B、命題“?x0∈R,x02-x0-1<0”的否定是“?x∈R,x2-x-1≥0”
C、“φ=
π
2
”是“y=sin(2x+φ)為偶函數(shù)”的充要條件
D、a<0時,冪函數(shù)y=xa在(0,+∞)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若cosθ=-
3
5
,θ∈(
π
2
,π),則sin(
π
3
-θ)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的導(dǎo)數(shù).
(1)y=ex+xlnx;
(2)y=
sinx-x
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(x+
φ
2
)cos(x+
φ
2
)的圖象沿x軸向右平移
π
8
個單位后,得到一個偶函數(shù)的圖象,則φ的取值不可能是( 。
A、
4
B、-
π
4
C、
π
4
D、
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O是坐標(biāo)原點,點A(-1,1),若點M(x,y)為平面區(qū)域
x+y≥2
2x-1≤1
log2(y-1)≤0
上的一個動點,則
AO
OM
的取值范圍是( 。
A、[-2,0]
B、[-2,0)
C、[0,2]
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8cos410°-6cos20°+
3
sin40°=( 。
A、
3
B、3
C、
3
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
1
2
|x|
(1)判斷函數(shù)f(x)的奇偶性;
(2)畫出函數(shù)f(x)的簡圖;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f0(x)=cosx,fn+1(x)=fn′(x),n∈N,則f2015(x)=
 

查看答案和解析>>

同步練習(xí)冊答案