分析 由已知可得:n=2k-1時,a2k+1-a2k-1=2,為等差數(shù)列;n=2k時,a2k+2=2a2k,為等比數(shù)列.分組求和即可得出.
解答 解:∵數(shù)列{an}滿足a1=a2=1,an+2=$\left\{{\begin{array}{l}{{a_n}+2,}&{n=2k-1(k∈{N^*})}\\{2{a_n},}&{n=2k(k∈{N^*})}\end{array}}$,
∴n=2k-1時,a2k+1-a2k-1=2,為等差數(shù)列;
n=2k時,a2k+2=2a2k,為等比數(shù)列.
∴${S_{2n}}=({1+3+5+…+2n-1})+({1+2+4+…+{2^{n-1}}})={n^2}+{2^n}-1$.
故答案為:2n+n2-1.
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其求和公式、“分組求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com