分析 由已知條件,得到cos(β-γ)=1+$\frac{3}{2[(k-1)^{2}-1]}$,根據(jù)余弦函數(shù)和二次函數(shù)的性質(zhì)即可求出最值.
解答 解:cosα+kcosβ+(2-k)cosγ=0,①
sinα+ksinβ+(2-k)sinγ=0,②)
將①②中含有α的項移到右邊,得到:kcosβ+(2-k)cosγ=-cosα,③
ksinβ+(2-k)sinγ=-sinα ④,
③④兩邊分別平方,再左右分別相加(目的是消去α),得到:k2+(2-k)2+2k(2-k)(cosβcosγ+sinβsinγ)=1,
∴2k2-4k+4+2k(2-k)cos(β-γ)=1,
∴cos(β-γ)=$\frac{2{k}^{2}-4k+3}{2{k}^{2}-4k}$=1+$\frac{3}{2{k}^{2}-4k}$=1+$\frac{3}{2[(k-1)^{2}-1]}$,
又0<k<2
當k=1時,(k-1)2-1最小,此時cos(β-γ)最大,cos(β-γ)=-0.5
任意角的余弦最小為-1,當cos(β-γ)=-1,即1+$\frac{3}{2{k}^{2}-4k}$=-1,此時k=$\frac{1}{2}$或$\frac{3}{2}$,
綜上,cos(β-γ)最大值為-0.5,最小值為-1
點評 本題考查了三角函數(shù)的化簡和求值,以及余弦函數(shù)的圖象和性質(zhì),屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12 | B. | 14 | C. | 16 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{a}$=(1,3,5),$\overrightarrow{n}$=(1,0,1) | B. | $\overrightarrow{a}$=(1,0,0),$\overrightarrow{n}$=(-2,0,0) | ||
C. | $\overrightarrow{a}$=(1,-1,3),$\overrightarrow{n}$=(0,3,1) | D. | $\overrightarrow{a}$=(0,2,1),$\overrightarrow{n}$=(-1,0,-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=x+1 | B. | $f(x)=-\frac{1}{x}$ | C. | f(x)=x2 | D. | f(x)=x3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | $\sqrt{5}$ | C. | $2+\sqrt{3}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 62 | B. | 64 | C. | 84 | D. | 100 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com