A. | $2\sqrt{2}$ | B. | $\sqrt{5}$ | C. | $2+\sqrt{3}$ | D. | $2\sqrt{3}$ |
分析 根據(jù)對(duì)數(shù)函數(shù)的性質(zhì),求出ab=1,然后利用基本不等式求$\frac{{{a^2}+{b^2}}}{a-b}$的最小值.
解答 解:因?yàn)閒(x)=|lnx|,f(a)=f(b),所以|lna|=|lnb|,
即lna=±lnb,
又a>b>0,所以lna=-lnb,ab=1,
所以$\frac{{{a^2}+{b^2}}}{a-b}=\frac{{{{(a-b)}^2}+2ab}}{a-b}=(a-b)+\frac{2}{a-b}≥2\sqrt{2}$,當(dāng)且僅當(dāng)ab=1且$a-b=\frac{2}{a-b}$時(shí)取等號(hào),
所以$\frac{{{a^2}+{b^2}}}{a-b}$的最小值是$2\sqrt{2}$,
故選A.
點(diǎn)評(píng) 本題主要考查基本不等式的應(yīng)用,利用對(duì)數(shù)函數(shù)的圖象和性質(zhì)求出ab=1是解決本題的關(guān)鍵,注意基本不等式成立的條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一、二象限 | B. | 第二、三象限 | C. | 第三、四象限 | D. | 第一、四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1024 | B. | 1024 | C. | 1023 | D. | -1023 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com