下面四個命題中,錯誤的是( 。
A、從勻速快遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每15分鐘從中抽取一樣產(chǎn)品進行某項指標檢測,這樣的抽樣是系統(tǒng)抽樣
B、對分類變量X與Y的隨機變量K2的觀測值k來說,k越大,“X與Y有關(guān)系”的把握程度越大
C、兩個隨機變量相關(guān)越強,則相關(guān)系數(shù)的絕對值越接近于0
D、在回歸直線方程y=0.4x+12中,當解釋變量x每增加一個單位時,預(yù)報變量平均增加0.4個單位
考點:命題的真假判斷與應(yīng)用
專題:閱讀型,概率與統(tǒng)計
分析:A.利用系統(tǒng)抽樣的定義即可判斷出;
B.對分類變量X與Y的隨機變量K2的觀測值k來說,k越大,“X與Y有關(guān)系”的把握程度越大,即可判斷出;
C.利用兩個隨機變量相關(guān)性與相關(guān)系數(shù)的絕對值的關(guān)系即可判斷出;
D.利用一次函數(shù)的單調(diào)性即可判斷出.
解答: 解:對于A,從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每15分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是系統(tǒng)抽樣,根據(jù)系統(tǒng)抽樣的定義,可得正確;
對于B,對分類變量X與Y的隨機變量K2的觀測值k來說,k越大,“X與Y有關(guān)系”的把握程度越大,正確;
對于C,兩個隨機變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于1,則C錯誤;
對于D,在回歸直線方程
y
=0.4x+12中,當解釋變量x每增加一個單位時,預(yù)報變量
y
平均增加0.4個單位,正確.
故選C.
點評:本題考查了概率統(tǒng)計中系統(tǒng)抽樣及隨機變量的相關(guān)性研究回歸直線方程的概念,考查了推理能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

運行如圖所示的程序框圖,輸出的所有實數(shù)對(x,y)所對應(yīng)的點都在某函數(shù)圖象上,則該函數(shù)的解析式為(  )
A、y=x+2
B、y=
3
x
C、y=3x
D、y=3x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左,右焦點分別為F1,F(xiàn)2,若在雙曲線的右支上存在點P,使得|PF1|=3|PF2|,則雙曲線離心率e的最大值為 。
A、
2
B、2
C、3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某次考試中,從甲乙兩個班各抽取10名學(xué)生的數(shù)學(xué)成績進行統(tǒng)計分析,兩個班成績的莖葉圖如圖所示,成績不小于90分的為及格.
(1)用樣本估計總體,請根據(jù)莖葉圖對甲乙兩個班級的成績進行比較;
(2)求從甲班10名學(xué)生和乙班10名學(xué)生中各抽取一人,已知有人及格的條件下乙班同學(xué)不及格的概率;
(3)從甲班10人中抽取一人,乙班10人中抽取二人,三人中及格人數(shù)記為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個算法流程圖,則輸出的x的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)某種商品x(百件)的總成本函數(shù)為C(x)=
1
3
x3-6x2
+29x+15(萬元),利潤R(x)=20x-x2(萬元)則生產(chǎn)這種商品所獲利潤的最大值為多少?此時生產(chǎn)了多少商品(百件)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn,且滿足:
1
a1-1
+
2
a2-1
+
3
a3-1
+…+
n
an-1
=n,n∈N*
(1)求an;
(2)求證:
1
S1
+
1
S2
+…+
1
Sn
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知⊙O的半徑為2,PA是⊙O的切線,A為切點,且PA=2
2
,過點P的一條割線與⊙O交于B,C兩點,圓心O到割線的距離為
3
,則PB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ax2+bx+c>0的解集為{x|-3<x<4},求不等式bx2+2ax-c-3b<0的解集.

查看答案和解析>>

同步練習(xí)冊答案