20.2015年7月9日21時15分,臺風(fēng)“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人受災(zāi),5.6萬人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟損失12.99億元,距離陸豐市222千米的梅州也受到了臺風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出頻率分布直方圖(如圖):
(Ⅰ)試根據(jù)頻率分布直方圖估計小區(qū)平均每戶居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅱ)小明向班級同學(xué)發(fā)出倡議,為該小區(qū)居民捐款,現(xiàn)從損失超過4000元的居民中隨機抽出2戶進(jìn)行捐款援助,設(shè)抽出損失超過8000元的居民為ξ戶,求ξ的分布列和數(shù)學(xué)期望;
(Ⅲ)臺風(fēng)后區(qū)委會號召該小區(qū)居民為臺風(fēng)重災(zāi)捐款,小明調(diào)查的50戶居民捐款情況如表,在表格空白處填寫正確數(shù)字,并說明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟損失是否到4000元有關(guān)?

 經(jīng)濟損失不超過4000元 經(jīng)濟損失超過4000元 合計 
 捐款超過500元 30  
 捐款不超過500元  6 
 合計   
 P(K2≥k)0.15  0.100.05  0.0250.010  0.0050.001 
 k 2.0722.706  3.8415.024  6.6357.879  10.828
附:臨界值表參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

分析 (Ⅰ)由頻率分布直方圖能估計小區(qū)平均每戶居民的平均損失.
(Ⅱ)由頻率分布直方圖,得損失超過4000元的居民有15戶,ξ的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出ξ的分布列和Eξ.
(Ⅲ)求出K2,從而得到有95%以上的把握認(rèn)為捐款數(shù)額是否多于或少500元和自身經(jīng)濟損失是否4000元有關(guān).

解答 解:(Ⅰ)記每戶居民的平均損失為$\overline{x}$元,
則由頻率分布直方圖估計小區(qū)平均每戶居民的平均損失:
$\overline{x}$=(1000×0.00015+3000×0.0002+5000×0.00009+7000×0.00003+9000×0.00003)×2000=3360.
(Ⅱ)由頻率分布直方圖,得:
損失超過4000元的居民有:
(0.00009+0.00003+0.00003)×2000×50=15戶,
∴ξ的可能取值為0,1,2,
P(ξ=0)=$\frac{{C}_{12}^{2}}{{C}_{15}^{2}}$=$\frac{22}{35}$,
P(ξ=1)=$\frac{{C}_{3}^{1}{C}_{12}^{1}}{{C}_{15}^{2}}$=$\frac{12}{35}$,
P(ξ=2)=$\frac{{C}_{3}^{2}}{{C}_{15}^{2}}$=$\frac{1}{35}$,
∴ξ的分布列為:

 ξ 0 1
 P $\frac{22}{35}$ $\frac{12}{35}$ $\frac{1}{35}$
Eξ=$0×\frac{22}{35}+1×\frac{12}{35}+2×\frac{1}{35}$=$\frac{2}{5}$.
(Ⅲ)如表:
  經(jīng)濟損失不超過4000元 經(jīng)濟損失超過4000元 合計
 捐款超過500元 30 9 39
 捐款不超過500元 5 6 11
 合計 35 15 50
∴K2=$\frac{50(30×6-9×5)}{39×11×35×15}$=$\frac{4050}{1001}$=4.046>3.841,
∴有95%以上的把握認(rèn)為捐款數(shù)額是否多于或少500元和自身經(jīng)濟損失是否4000元有關(guān).

點評 本題考查頻率分布直方圖的應(yīng)用,考查離散型隨機變量的分布列的求法,是中檔題,解題時要認(rèn)真審題,注意排列組合知識的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知拋物線的頂點在原點,對稱軸為x軸,焦點在直線3x-4y-12=0上,那么拋物線通徑長是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在用數(shù)學(xué)歸納法求證:1+2+3+…+2n=$\frac{2n(1+2n)}{2}$(n∈N*)的過程中,則當(dāng)n=k+1時,左端應(yīng)在n=k時的左端上加上4k+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c,且$2{cos^2}\frac{C-A}{2}$•cosA-sin(C-A)•sinA+cos(B+C)=$\frac{1}{3}$,c=2$\sqrt{2}$.
(Ⅰ)求sinC;
(Ⅱ)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)a,b,c∈R+,求$\frac{a}{3b+c}$+$\frac{c+2a}$+$\frac{c}{2a+3b}$的最小值$\frac{\sqrt{6}}{6}$+$\frac{\sqrt{3}}{3}$+$\frac{\sqrt{2}}{2}$-$\frac{7}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在等比數(shù)列{an}中,公比q=-2,且a3a7=4a4,則a8等于(  )
A.16B.32C.-16D.-32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知關(guān)于x的方程x3-ax2-x+1=0有且只有一個實根,則實數(shù)a的取值范圍為(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在等比數(shù)列{an}中,a2•a3•a7=8,則a4=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.復(fù)數(shù)(1-i)(2+2i)=( 。
A.4B.-4C.2D.-2

查看答案和解析>>

同步練習(xí)冊答案