10.如圖所示正方形O'A'B'C'的邊長(zhǎng)為2cm,它是一個(gè)水平放置的一個(gè)平面圖形的直觀圖,則原圖形的面積是4$\sqrt{2}$cm2

分析 由已知中正方形O'A'B'C'的邊長(zhǎng)為2cm,我們易得直觀圖的面積為4cm2,又由它是一個(gè)水平放置的平面圖形的斜二側(cè)直觀圖,可以根據(jù)原幾何圖形的面積:直觀圖的面積=2$\sqrt{2}$:1,快速的計(jì)算出答案.

解答 解:由于原幾何圖形的面積:直觀圖的面積=2$\sqrt{2}$:1
又∵正方形O'A'B'C'的邊長(zhǎng)為2cm,
∴正方形O'A'B'C'的面積為4cm2,
原圖形的面積S=4$\sqrt{2}$cm2,
故答案為:4$\sqrt{2}$cm2

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是平面圖形的直觀圖,其中原幾何圖形的面積:直觀圖的面積=2$\sqrt{2}$:1,能夠幫助我們快速的在直觀圖面積和原圖面積之間進(jìn)行轉(zhuǎn)化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知命題p:滿足{a1,a2,…,an}⊆M?{a1,a2,…,an+m}的集合M有2m-1個(gè),命題q:等比數(shù)列{an}是遞增數(shù)列的充分不必要條件是其公比大于1,則下列命題是真命題的是(  )
A.(¬p)∧(¬q)B.p∧(¬q)C.p∧qD.(¬p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.集合A={a,b}則它的子集有(  )
A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,a=$\sqrt{3}$,b=3,sinC=2sinA,則cosA=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求下列函數(shù)的導(dǎo)數(shù)
(1)y=x4-2x2+3x-1;
(2)y=$\frac{x-1}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.6名同學(xué)站成一排照畢業(yè)相,要求甲不站在兩側(cè),而且乙和丙相鄰、丁和戊相鄰,則不同的站法種數(shù)為(  )
A.60B.96C.48D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=ax2-2ax+c滿足f(2017)<f(-2016),則滿足f(m)≤f(0)的實(shí)數(shù)m的取值范圍是( 。
A.(-∞,0]B.[0,2]C.(-∞,0]∪[2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若三棱臺(tái)ABC-A1B1C1中,AB=6,A1B1=3,則三棱錐A-A1B1C1與三棱錐B1-ABC的體積之比是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)f(x)=ax2+bx+2是定義在[1+a,2]上的偶函數(shù),則(-3)b+3${\;}^{-\sqrt{1-a}}$=(  )
A.$\frac{10}{9}$B.$\frac{1}{9}$C.10D.D、不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案