分析 (Ⅰ)根據(jù)圓C1:x2+y2+Dx+Ey+F=0關(guān)于直線x+y-2=0對(duì)稱,且經(jīng)過(guò)點(diǎn)(0,0)和(4,0),建立方程組,即可求圓C1的標(biāo)準(zhǔn)方程;
(Ⅱ)分類討論,利用過(guò)原點(diǎn)的直線l與C2相交所得的弦長(zhǎng)為$\sqrt{2}$,求l的方程;
(ii)利用S△ABQ=$3{S}_{△AB{C}_{2}}$,求△ABQ面積的最大值.
解答 解:(Ⅰ)由題意,$\left\{\begin{array}{l}{-\frac{D}{2}-\frac{E}{2}-2=0}\\{F=0}\\{16+4D+F=0}\end{array}\right.$,
解得D=-4,E=F=0,
∴圓C1的標(biāo)準(zhǔn)方程(x-2)2+y2=4;
(Ⅱ)(i)斜率不存在時(shí),方程為x=0,與C2無(wú)交點(diǎn),不滿足題意;
斜率存在時(shí),設(shè)方程為kx-y=0,則圓心到直線的距離為$\frac{|2k|}{\sqrt{{k}^{2}+1}}$
∵過(guò)原點(diǎn)的直線l與C2相交所得的弦長(zhǎng)為$\sqrt{2}$,
∴$\frac{|2k|}{\sqrt{{k}^{2}+1}}$=$\sqrt{1-\frac{1}{2}}$,
∴k=±$\frac{\sqrt{7}}{7}$,
∴l(xiāng)的方程為x$±\sqrt{7}$y=0;
(ii)設(shè)P(x0,y0),AB::y-y0=k(x-x0),
∵|C2Q|=2|C2P|,
∴${S}_{△B{C}_{2}Q}=2{S}_{△B{C}_{2}P},{S}_{△A{C}_{2}Q}=2{S}_{△A{C}_{2}P}$,
∴S△ABQ=$3{S}_{△AB{C}_{2}}$
圓心C2到直線AB的距離d=$\frac{|k(2-{x}_{0})+{y}_{0}|}{\sqrt{1+{k}^{2}}}$(0<d≤1),|AB|=2$\sqrt{4-qtcgsya^{2}}$,
∵${S}_{△AB{C}_{2}}$=$\frac{1}{2}$|AB|d,
∴S△ABQ=$3{S}_{△AB{C}_{2}}$=3d$\sqrt{4-nzelsdj^{2}}$=3$\sqrt{-(scfkyef^{2}-2)^{2}+4}$
∴d2=1時(shí),△ABQ的面積最大,最大為3$\sqrt{3}$.
點(diǎn)評(píng) 本題考查圓的方程,考查直線與圓的位置關(guān)系,考查三角形面積的計(jì)算,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 1 | C. | -2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2)(4) | B. | (1)(2)(4) | C. | (2)(3) | D. | (2)(3)(4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10+6i | B. | 8+6i | C. | 8-6i | D. | 10-6i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com