分析 求出不等式的等價條件,結(jié)合充分條件和必要條件的定義建立不等式關(guān)系進(jìn)行求解即可.
解答 解:由x2-3x-4≤0得-1≤x≤4,
由|x-3|≤m(m>0),得3-m≤x≤3+m,
∵p是q的必要不充分條件,
∴[3-m,3+m]?[-1,4],
則$\left\{\begin{array}{l}{3-m≥-1}\\{3+m≤4}\end{array}\right.$,即$\left\{\begin{array}{l}{m≤4}\\{m≤1}\end{array}\right.$,即0<m≤1,
故答案為:(0,1].
點評 本題主要考查充分條件和必要條件的應(yīng)用,根據(jù)充分條件和必要條件的定義建立不等式關(guān)系是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m>1 | B. | $m>\sqrt{2}$ | C. | m<-1 | D. | $m<-\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m>p>n | B. | p>n>m | C. | n>m>p | D. | m>n>p |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{0,\sqrt{2}}]$ | B. | {(-1,1),(1,1)} | C. | {1} | D. | [0,1] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com