5.已知p:x2-3x-4≤0,q:|x-3|≤m(m>0),若p是q的必要不充分條件,則實數(shù)m的取值范圍是(0,1].

分析 求出不等式的等價條件,結(jié)合充分條件和必要條件的定義建立不等式關(guān)系進(jìn)行求解即可.

解答 解:由x2-3x-4≤0得-1≤x≤4,
由|x-3|≤m(m>0),得3-m≤x≤3+m,
∵p是q的必要不充分條件,
∴[3-m,3+m]?[-1,4],
則$\left\{\begin{array}{l}{3-m≥-1}\\{3+m≤4}\end{array}\right.$,即$\left\{\begin{array}{l}{m≤4}\\{m≤1}\end{array}\right.$,即0<m≤1,
故答案為:(0,1].

點評 本題主要考查充分條件和必要條件的應(yīng)用,根據(jù)充分條件和必要條件的定義建立不等式關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)sin10°+cos10°<mcos(-215°),則m的取值范圍為( 。
A.m>1B.$m>\sqrt{2}$C.m<-1D.$m<-\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)m=$\sqrt{6}$-$\sqrt{5}$,n=$\sqrt{7}$-$\sqrt{6}$,p=$\sqrt{8}$-$\sqrt{7}$,則m,n,p的大小順序為(  )
A.m>p>nB.p>n>mC.n>m>pD.m>n>p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)已知a>b>0,c>d>0.求證:$\frac{ac}{a+c}$>$\frac{bd}{b+d}$;
(2)已知c>a>b>0,求證:$\frac{a}{c-a}$>$\frac{c-b}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函象y=f(x)的圖象與函數(shù)y=ax(a>0且a≠1)的圖象關(guān)于直線y=x對稱,記g(x)=f(x)[f(x)+2f(2)-1],若y=g(x)在區(qū)間[$\frac{1}{2}$,2]上是增函數(shù),則實數(shù)a的取值范圍是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,滿足|$\overrightarrow{a}$|=4,|$\overrightarrow$|=2,$\overrightarrow{a}$•$\overrightarrow$=0,($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow$)=0
(Ⅰ)求|$\overrightarrow{a}$-2$\overrightarrow$|的值;
(Ⅱ)求|$\overrightarrow{c}$|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,左、右焦點分別為F1,F(xiàn)2,點G在橢圓C上,且$\overrightarrow{G{F}_{1}}$•$\overrightarrow{G{F}_{2}}$=0,△GF1F2的面積為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓的左右頂點為A,B,過F2的直線l與橢圓交于不同的兩點M,N(不同于點A,B),探索直線AM,BN的交點能否在一條垂直于x軸的定直線上,若能,求出這條定直線的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.銳角三角形ABC中,已知B=$\frac{π}{4}$,求$\sqrt{2}$cosA+cosC取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合A={y∈R|y=x2},B={x∈R|x2+y2=2},則A∩B=( 。
A.$[{0,\sqrt{2}}]$B.{(-1,1),(1,1)}C.{1}D.[0,1]

查看答案和解析>>

同步練習(xí)冊答案