16.棱長均為1的正三棱柱ABC-A1B1C1的外接球表面積為$\frac{7π}{3}$.

分析 根據(jù)三棱柱的底面邊長及高,先得出棱柱底面外接圓的半徑及球心距,進而求出三棱柱外接球的球半徑,代入球的表面積公式即可得到棱柱的外接球的表面積.

解答 解:由正三棱柱的底面邊長為1,
得底面所在平面截其外接球所成的圓O的半徑r=$\frac{\sqrt{3}}{3}$,
又由正三棱柱的側(cè)棱長為1,則球心到圓O的球心距d=$\frac{1}{2}$,
根據(jù)球心距,截面圓半徑,球半徑構(gòu)成直角三角形,
滿足勾股定理,我們易得球半徑R滿足:R2=r2+d2=$\frac{7}{12}$,
∴外接球的表面積S=4πR2=$\frac{7π}{3}$.
故答案為$\frac{7π}{3}$.

點評 本題考查的是棱柱的幾何特征及球的體積和表面積,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,其中根據(jù)已知求出三棱柱的外接球半徑是解答本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.某電力公司調(diào)查了某地區(qū)夏季居民的用電量y(萬千瓦時)是時間t(0≤t≤24,單位:小時)的函數(shù),記作y=f(t),如表是某日各時的用電量數(shù)據(jù):
t(時)03691215182124
y(萬千瓦時)2.521.522.521.522.5
經(jīng)長期觀察y=f(t)的曲線可近似地看成函數(shù)y=Asin(ωt+φ)+B(A>0,0<φ<π).
(Ⅰ)根據(jù)以上數(shù)據(jù),求出函數(shù)y=Asin(ωt+φ)+B(A>0,0<φ<π)的解析式;
(Ⅱ)為保證居民用電,電力部門提出了“消峰平谷”的想法,即提高高峰時期的電價,同時降低低峰時期的電價,鼓勵企業(yè)在低峰時用電.若居民用電量超過2.25萬千瓦時,就要提高企業(yè)用電電價,請依據(jù)(Ⅰ)的結(jié)論,判斷一天內(nèi)的上午8:00到下午18:00,有幾個小時要提高企業(yè)電價?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.某市政府在調(diào)查市民收入增減與旅游愿望的關(guān)系時,采用獨立性檢驗法抽查了3000人,計算發(fā)現(xiàn)K2的觀測值k=6.023,根據(jù)這一數(shù)據(jù)查閱下表,市政府斷言市民收入增減與旅游愿望有關(guān)系這一斷言犯錯誤的概率不超過( 。
P(K2≥k00.500.400.250.150.100.50.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
A.0.1B.0.05C.0.025D.0.005

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)y=|2sinx|的最小正周期為( 。
A.$\frac{π}{2}$B.πC.$\frac{π}{4}$D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.請嚴格用三段論證明:函數(shù)$y=\frac{{{2^x}-1}}{{{2^x}+1}}$是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.對某電子元件進行壽命追蹤調(diào)查,情況如下.
壽命(h)100~200200~300300~400400~500500~600
個  數(shù)2030804030
(1)列出頻率分布表;
(2)畫出頻率分布直方圖及頻率分布折線圖;
(3)估計元件壽命在100~400h以內(nèi)的在總體中占的比例;
(4)從頻率分布直方圖可以看出電子元件壽命的眾數(shù),平均數(shù)和中位數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設{an}為等差數(shù)列,Sn為其前n項和,已知S7=7,S15=75,
(1)求數(shù){an}列的通項公式.
(2)記${b_n}=2{a_n}+5,{T_n}=\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}$,
是否存在最小的正整數(shù)m,使得對一切n∈N*,Tn<$\frac{m}{4}$恒成立?若存在求出m的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知正數(shù)a,b,c滿足4a-2b+25c=0,則lga+lgc-2lgb的最大值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.數(shù)列{an}滿足a1=10,an+1=an+18n+10(n∈N*)記[x]表示不超過實數(shù)x的最大整數(shù),則$\lim_{n→∞}$($\sqrt{a_n}$-[${\sqrt{a_n}}$])=( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

同步練習冊答案