9.在△ABC中,如果lga-lgc=lg(sinB)=-lg$\sqrt{2}$,且B為銳角,試求A,B,C.

分析 由已知的條件利用正弦定理,余弦定理和對數(shù)的運(yùn)算性質(zhì)即可求A,B,C.

解答 解:在△ABC中,
∵lga-lgc=lgsinB=-lg$\sqrt{2}$=lg$\frac{\sqrt{2}}{2}$,并且B為銳角,
∴l(xiāng)g$\frac{a}{c}$=lgsinB=-lg$\sqrt{2}$=lg$\frac{\sqrt{2}}{2}$,
∴sinB=$\frac{\sqrt{2}}{2}$,∴B=$\frac{π}{4}$,且$\frac{a}{c}$=$\frac{\sqrt{2}}{2}$,
∴c=$\sqrt{2}$a,∴cosB=$\frac{\sqrt{2}}{2}$,
∴由余弦定理得cosB=$\frac{\sqrt{2}}{2}$=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{3{a}^{2}-^{2}}{2\sqrt{2}{a}^{2}}$,
得a2=b2,即a=b,
∴三角形ABC為等腰三角形,
即A=B=$\frac{π}{4}$,
∴C=$\frac{π}{2}$

點(diǎn)評 本題考查對數(shù)函數(shù)的運(yùn)算性質(zhì),直角三角形中的邊角關(guān)系,要求熟練掌握余弦定理和正弦定理的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow a$=(-1,-2),$\overrightarrow b$=(1,λ),若$\overrightarrow a$,$\overrightarrow b$的夾角為鈍角,則λ的取值范圍是( 。
A.(-∞,-$\frac{1}{2}$)B.(-$\frac{1}{2}$,2)∪(2,+∞)C.(-$\frac{1}{2}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知定義在[-1,+∞]上的函數(shù)在區(qū)間[-1,3)上的解析式為f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}}(-1≤x<1)}\\{\frac{3}{2}-\frac{3}{x}×|x-2|(1≤x<3)}\end{array}\right.$,當(dāng)x≥3時,函數(shù)滿足f(x)=f(x-4)+1,若函數(shù)g(x)=f(x)-kx-k有6個零點(diǎn),則實(shí)數(shù)k的取值或取值范圍為( 。
A.($\frac{5}{14}$,$\frac{9+\sqrt{21}}{40}$)B.$\frac{5}{14}$C.($\frac{5}{12}$,$\frac{1}{2}$)D.($\frac{5}{14}$,$\frac{5}{12}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2lnx-ax.
(1)若曲線f(x)在點(diǎn)(1,f(1))處的切線過點(diǎn)(2,0),求a的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.正項(xiàng)數(shù)列{an}滿足:an2-(2n-1)an-2n=0.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令bn=2n-1 an-n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x3+3|x-a|+2(a∈R).
(1)當(dāng)a=0時,討論f(x)的單調(diào)性;
(2)當(dāng)a≤1時,求f(x)在區(qū)間[0,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知△ABC的三個頂點(diǎn)分別為A(1,2),B(5,0),C(3,4).
(1)求過點(diǎn)A且與直線BC垂直的直線方程.
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知AB=AD=2,BC=2BD=2$\sqrt{3}$,求sinC的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a>0,且a≠1,解關(guān)于x的不等式2loga(x-3)>logax2

查看答案和解析>>

同步練習(xí)冊答案