8.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),F(xiàn)1,F(xiàn)2是左右焦點,A,B是長軸兩端點,點P(a,b)與F1,F(xiàn)2圍成等腰三角形,且${S_{△P{F_1}{F_2}}}$=$\sqrt{3}$.
(I)求橢圓C的方程;
(Ⅱ)設(shè)點Q是橢圓上異于A,B的動點,直線QA、QB分別交直線l:x=m(m<-2)于M,N兩點.
(i)當(dāng)$\overrightarrow{Q{F_1}}$=λ$\overrightarrow{MN}$時,求Q點坐標(biāo);
(ii)是否存在實數(shù)m,使得以MN為直徑的圓經(jīng)過點F1?若存在,求出實數(shù)m的值,若不存在.請說明理由.

分析 (Ⅰ)由題意可得,F(xiàn)1F2=PF2,即(a-c)2+b2=4c2,再由${S}_{△P{F}_{1}{F}_{2}}=\sqrt{3}$,得bc=$\sqrt{3}$,然后結(jié)合隱含條件求得a,b,則橢圓方程可求;
(Ⅱ)(i)由$\overrightarrow{Q{F}_{1}}=λ\overrightarrow{MN}$,得則QF1⊥x軸,由(Ⅰ)求得F1(-1,0),設(shè)Q(-1,y),代入橢圓方程即可求得Q坐標(biāo);
(ii)設(shè)Q(x0,y0),得直線QA方程為$y=\frac{{y}_{0}}{{x}_{0}+2}(x+2)$,求出M點的坐標(biāo)為(m,$\frac{(m+2){y}_{0}}{{x}_{0}+2}$).同理得N的坐標(biāo)為$(m,\frac{(m-2){y}_{0}}{{x}_{0}-2})$.由${k}_{M{F}_{1}}•{k}_{N{F}_{1}}$=-1求得m=-4.可知存在實數(shù)m=-4,使得以MN為直徑的圓經(jīng)過點F.

解答 解:(Ⅰ)F1(-c,0),F(xiàn)2(c,0),由題意可得,F(xiàn)1F2=PF2,
∴(a-c)2+b2=4c2
由${S}_{△P{F}_{1}{F}_{2}}=\sqrt{3}$,可得$\frac{1}{2}•2c•b=bc=\sqrt{3}$,
又a2=b2+c2,聯(lián)立可得a=2,b=$\sqrt{3}$,
∴橢圓方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(Ⅱ)(i)∵$\overrightarrow{Q{F}_{1}}=λ\overrightarrow{MN}$,
∴QF1∥MN,則QF1⊥x軸,
由(Ⅰ)知,c2=1,則F1(-1,0),
設(shè)Q(-1,y),則有$\frac{1}{4}+\frac{{y}^{2}}{3}=1$,即y=$±\frac{3}{2}$,
∴Q(-1,$±\frac{3}{2}$);
(ii)設(shè)Q(x0,y0),則${k}_{QA}=\frac{{y}_{0}}{{x}_{0}+2}$,直線QA方程為$y=\frac{{y}_{0}}{{x}_{0}+2}(x+2)$,
令x=m,得M點的坐標(biāo)為(m,$\frac{(m+2){y}_{0}}{{x}_{0}+2}$).
同理${k}_{QB}=\frac{{y}_{0}}{{x}_{0}-2}$,直線QB的方程為$y=\frac{{y}_{0}}{{x}_{0}-2}(x-2)$,
得N的坐標(biāo)為$(m,\frac{(m-2){y}_{0}}{{x}_{0}-2})$.
∴${k}_{M{F}_{1}}•{k}_{N{F}_{1}}=\frac{\frac{(m+2){y}_{0}}{2+{x}_{0}}}{m+1}•\frac{\frac{(m-2){y}_{0}}{{x}_{0}-2}}{m+1}$=$\frac{({m}^{2}-4){{y}_{0}}^{2}}{(m+1)^{2}({{x}_{0}}^{2}-4)}$.
又Q(x0,y0)在橢圓上,
∴$\frac{{{x}_{0}}^{2}}{4}+\frac{{{y}_{0}}^{2}}{3}=1$,則$\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-4}=-\frac{3}{4}$.
∴${k}_{M{F}_{1}}•{k}_{N{F}_{1}}$=$\frac{{m}^{2}-4}{(m+1)^{2}}•(-\frac{3}{4})=-1$.
解得m=-4.
∴存在實數(shù)m=-4,使得以MN為直徑的圓經(jīng)過點F.

點評 本題考查橢圓的標(biāo)準(zhǔn)方程,考查了橢圓的簡單性質(zhì),考查直線與圓錐曲線位置關(guān)系的應(yīng)用,考查邏輯思維能力及運算求解能力,屬難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知F(c,0)是橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦點;圓F:(x-c)2+y2=a2與x軸交于D,E兩點,其中E是橢圓C的左焦點.
(1)求橢圓C的離心率;
(2)設(shè)圓F與y軸的正半軸的交點為B,點A是點D關(guān)于y軸的對稱點,試判斷直線AB與圓F的位置關(guān)系;
(3)設(shè)直線BF與橢圓C交于另一點G,直線BD與橢圓C交于另一點M,若△BMG的面積為$\frac{32\sqrt{3}}{13}$,求橢圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在地面A,B兩點仰望一僚望塔CD的頂部C,得仰角分別為60°、30°,又在塔底D測得A,B的張角為60°,已知AB=10$\sqrt{21}$米,試求瞭望塔的高度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.?dāng)?shù)列{an}的前n項和Sn滿足3Sn=4n+1-4,則數(shù)列{(3n-2)an}的前n項和為(n-1)4n+1+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某公司為了增加旅游效益,準(zhǔn)備在下屬的某生態(tài)園內(nèi)選定1號到7號7個并排的大棚,種植包括草莓和葡萄在內(nèi)的7種不同的水果,每個大棚只能種植一種水果供游客進行自摘.
(1)求草莓只能種植在3號或4號大棚,且葡萄不能在2號或5號大棚種植的方法種數(shù);
(2)求種植葡萄和草莓之間恰好間隔3個大棚的方法種數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.9個人排成一排,求在下列情況下,有多少種不同排法?
(1)甲不排頭,也不排尾;
(2)甲、乙、丙三人必須在一起;
(3)甲、乙、丙三人兩兩不相鄰;
(4)甲不排頭,乙不排當(dāng)中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)計一個算法,找出閉區(qū)間[20,25]上所有能被3整除的整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知如圖,△ABC和△DBC所在的平面互相垂直,且AB=BC=BD=1,∠ABC=∠DBC=120°.
(Ⅰ)在直線BC上求作一點O,使BC⊥平面ADO,寫出作法并說明理由;
(Ⅱ)求三棱錐A-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=x3
命題①:?x∈R,都有f(x)+f(-x)=0;
命題②:?x1,x2∈R,(x1-x2)(f(x1)-f(x2))<0.( 。
A.命題①成立,命題②不成立B.命題①不成立,命題②成立
C.命題①和命題②都成立D.命題①和命題②都不成立

查看答案和解析>>

同步練習(xí)冊答案