19.等比數(shù)列{an}的前4項(xiàng)和為5,前12項(xiàng)和為35,則前8項(xiàng)和為( 。
A.-10B.15C.-15D.-10或15

分析 設(shè)前8項(xiàng)的和為x,由等比數(shù)列{an}中,S4=5,S12-S8=35-x,根據(jù)等比數(shù)列的性質(zhì)即可求出.

解答 解:設(shè)前8項(xiàng)的和為x,
∵{an}是等比數(shù)列,
∴S4,S8-S4,S12-S8成等比數(shù)列,
∵等比數(shù)列{an}的前4項(xiàng)和為5,前12項(xiàng)和為35,
∴(x-5)2=5×(35-x),
解得x=-10或x=15,
∵S4,S8-S4,S12-S8它們的公比是q4,它們應(yīng)該同號(hào),∴-10舍去
故選:B.

點(diǎn)評(píng) 本題考查等比數(shù)列的性質(zhì),解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等比數(shù)列{an}中,a3=$\frac{3}{2}$,S3=$\frac{9}{2}$,求a1與q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在鈍角△ABC中,∠A為鈍角,令$\overrightarrow{a}$=$\overrightarrow{AB}$,$\overrightarrow$=$\overrightarrow{AC}$,若$\overrightarrow{AD}$=x$\overrightarrow{a}$+y$\overrightarrow$(x,y∈R).現(xiàn)給出下面結(jié)論:
①當(dāng)x=$\frac{1}{3},y=\frac{1}{3}$時(shí),點(diǎn)D是△ABC的重心;
②記△ABD,△ACD的面積分別為S△ABD,S△ACD,當(dāng)x=$\frac{4}{5},y=\frac{3}{5}$時(shí),$\frac{{{S_{△ABD}}}}{{{S_{△ACD}}}}=\frac{3}{4}$;
③若點(diǎn)D在△ABC內(nèi)部(不含邊界),則$\frac{y+1}{x+2}$的取值范圍是$(\frac{1}{3},1)$;
④若$\overrightarrow{AD}$=λ$\overrightarrow{AE}$,其中點(diǎn)E在直線BC上,則當(dāng)x=4,y=3時(shí),λ=5.
其中正確的有①②③(寫出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若a<b≤0,則2a-b-$\frac{1}{a(a-b)}$有( 。
A.最小值-$\frac{1}{3}$B.最小值-3C.最大值-$\frac{1}{3}$D.最大值-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知正實(shí)數(shù)x,y滿足xy=x+y,若xy≥m-2恒成立,則實(shí)數(shù)m的最大值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.sin(-$\frac{2}{3}$π)=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知tanα=2,則$\frac{2cosα}{sinα-cosα}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知tanβ=$\frac{1}{2}$,tan(α-β)=$\frac{1}{3}$,其中α,β均為銳角,則α=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知命題p:?x∈R,1-2sin2x+sinx+a≥0,命題q:?x0∈R,ax02-2x+a<0,命題p∨q為真,命題p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案