9.已知f(x)為定義在(0,+∞)上的可導(dǎo)函數(shù)且f(x)>0,若f(x)<xf'(x)恒成立,則不等式x2f($\frac{1}{x}$)-f(x)>0的解集為(0,1).

分析 令輔助函數(shù)F(x)=$\frac{f(x)}{x}$,求其導(dǎo)函數(shù),據(jù)導(dǎo)函數(shù)的符號與函數(shù)單調(diào)性的關(guān)系判斷出F(x)的單調(diào)性,利用單調(diào)性判斷出$\frac{f(\frac{1}{x})}{\frac{1}{x}}$>$\frac{f(x)}{x}$,由不等式的關(guān)系,利用不等式的性質(zhì)得到結(jié)論.

解答 解:令F(x)=$\frac{f(x)}{x}$,(x>0),
則F′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
∵f(x)<xf′(x),∴F′(x)>0,
∴F(x)為定義域上的增函數(shù),
由不等式x2f($\frac{1}{x}$)-f(x)>0,
得:$\frac{f(\frac{1}{x})}{\frac{1}{x}}$>$\frac{f(x)}{x}$,
∴$\frac{1}{x}$>x,∴0<x<1,
故答案為:(0,1).

點評 本題考查了導(dǎo)數(shù)的運算,考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,函數(shù)的導(dǎo)函數(shù)符號確定函數(shù)的單調(diào)性:當(dāng)導(dǎo)函數(shù)大于0時,函數(shù)單調(diào)遞增;導(dǎo)函數(shù)小于0時,函數(shù)單調(diào)遞減.此題為中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如果兩個方程的曲線經(jīng)過若干次平移或?qū)ΨQ變換后能夠完全重合,則稱這兩個方程為“互為鏡像方程對”.給出下列四對方程:
①y=sinx和y=sin2x;②$y={(\frac{1}{2})^x}$和y=2x;③y2=4x和x2=4y;④y=1+lnx和y=1-lnx
其中是“互為鏡像方程對”的有( 。
A.1對B.2對C.3對D.4對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=sin(2x+φ),其中|φ|<π,若f(x)≤|f($\frac{π}{6}$)|對x∈R恒成立,且f($\frac{π}{2}$)<f($\frac{π}{3}$),則f(x)的遞增區(qū)間是(  )
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)B.[kπ,kπ+$\frac{π}{2}$](k∈Z)C.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)D.[kπ-$\frac{π}{2}$,kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.?dāng)?shù)列{an}滿足a1=$\frac{1}{2}$,an+1=1-$\frac{1}{a_n}$,則a2016等于( 。
A.$\frac{1}{2}$B.-1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)非零常數(shù)d是等差數(shù)列x1,x2,x3,…,x9的公差,隨機(jī)變量ξ等可能地取值x1,x2,x3,…,x9,則方差Dξ=( 。
A.$\frac{10}{3}$d2B.$\frac{20}{3}$d2C.10d2D.6d2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知直線l1∥l2,A是l1,l2之間的一個交點,并且A點到l1,l2的距離分別為1,2,B是直線l2上一動點,作AC⊥AB且使AC與直線l1交于點C,則△ABC的面積最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖所示,已知D、E分別是△ABC的邊AB、AC的中點,把一粒黃豆隨機(jī)投到△ABC內(nèi),則黃豆落到陰影區(qū)域內(nèi)的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直角梯形ABCD中,AB∥CD,AB⊥AD,CD=2,AD=$\sqrt{2}$,AB=1,如圖1所示,將△ABD沿BD折起到△PBD的位置,如圖2所示.
(Ⅰ)當(dāng)平面PBD⊥平面PBC時,求三棱錐P-BCD的體積;
(Ⅱ)在圖2中,E為PC的中點,若線段BQ∥CD,且EQ∥平面PBD,求線段BQ的長;
(Ⅲ)求證:BD⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線y=mx與函數(shù)f(x)=$\left\{\begin{array}{l}{0.5{x}^{2}+1,x>0}\\{2-(\frac{1}{3})^{x},x≤0}\end{array}\right.$的圖象恰好有3個不同的公共點,則實數(shù)m的取值范圍是( 。
A.($\sqrt{3}$,4)B.($\sqrt{2}$,+∞)C.($\sqrt{2}$,5)D.($\sqrt{3}$,2$\sqrt{2}$ )

查看答案和解析>>

同步練習(xí)冊答案