8.已知雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線與直線y=-1所圍成的三角形的面積為4,則雙曲線C的離心率為$\sqrt{17}$.

分析 求出雙曲線的漸近線方程,令y=-1可得兩交點(diǎn)的橫坐標(biāo),再由三角形的面積公式可得b=4a,由a,b,c的關(guān)系和離心率公式計(jì)算即可得到所求值.

解答 解:雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1的兩條漸近線方程為y=±$\frac{a}$x,
令y=-1可得x=±$\frac{a}$,
由漸近線與直線y=-1所圍成的三角形的面積為4,
可得$\frac{1}{2}$•1•$\frac{2b}{a}$=4,即有b=4a,
則c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{17}$a,
即有e=$\frac{c}{a}$=$\sqrt{17}$.
故答案為:$\sqrt{17}$.

點(diǎn)評 本題考查雙曲線的離心率的求法,注意運(yùn)用漸近線方程,同時(shí)考查三角形的面積的計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.地球上,在北緯30°圈上有兩個(gè)點(diǎn)A、B,它們的經(jīng)度之差為180°,則A、B兩點(diǎn)間的球面距離為(地球的半徑為R)(  )
A.$\frac{\sqrt{3}}{3}$RB.$\frac{1}{3}$πRC.$\frac{1}{2}$πRD.$\frac{2}{3}$πR

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=$\sqrt{3}$cos2x-sinxcosx
(I)求函數(shù)f(x)的最大值及對應(yīng)x的值;
(Ⅱ)在△ABC中,∠A,∠B,∠C所對的邊分別是a、b、c,若($\frac{C}{2}$,$\frac{\sqrt{3}}{2}$)是函數(shù)f(x)圖象的一個(gè)對稱中心,且△ABC的周長為6時(shí),求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=3sin(x+$\frac{π}{6}$)+$\sqrt{3}$sin($\frac{π}{3}$-x)的最大值是( 。
A.3B.6C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.命題p:y=(a2+4a-5)x2-4(a-1)x+3的圖象全在x軸的上方,命題q:函數(shù)f(x)=x2-4x+3在[0,a]的值域?yàn)閇-1,3],若p∨q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=$\frac{{a}_{n}^{2}+3{a}_{n}+2}{6}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a2=4a1,bn=$\frac{3}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn<$\frac{15}{16}$時(shí)自然數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.己知x>0,y>0,且4xy-x-2y=4,則xy的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知A={x|x2<x},B={x|x2<logax},且B?A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.購買某種汽車的費(fèi)用為15萬元,每年應(yīng)交保險(xiǎn)費(fèi),養(yǎng)路費(fèi)及汽油費(fèi)合計(jì)為1萬元,汽車的年平均維修費(fèi)如下:第1年4千元,第2年7千元,第3年1萬元,依次成等差數(shù)列逐年遞增,
(1)求這種汽車使用n年的年平均費(fèi)用y與n的函數(shù)關(guān)系式;
(2)問使用多少年報(bào)廢最合算(即使用多少年年平均費(fèi)用最少)?

查看答案和解析>>

同步練習(xí)冊答案