分析 (1)利用兩角和與差的三角函數(shù)化簡函數(shù)的解析式為一個角的一個三角函數(shù)的形式,利用余弦函數(shù)的對稱中心求解即可.
(2)通過函數(shù)的值,求出A的值,然后利用正弦定理化簡函數(shù)的表達(dá)式,利用角的范圍,求解$\frac{c}$的取值范圍
解答 解:(1)由條件得$f(x)=2cos(2x+\frac{π}{3})-2cos2x+1$=$-\sqrt{3}sin2x-cos2x+1=-2sin(2x+\frac{π}{6})+1$,
由$2x+\frac{π}{6}=kπ(k∈Z)$,解得$x=-\frac{π}{12}+\frac{kπ}{2}$,
于是所求的對稱中心($-\frac{π}{12}$+$\frac{kπ}{2}$,1)k∈Z.
(2)f(A)=0,可得-2sin(2A+$\frac{π}{6}$)+1=0,解得A=$\frac{π}{3}$,B+C=$\frac{2π}{3}$,
所以$\frac{c}$=$\frac{sinB}{sinC}$=$\frac{sin(\frac{2π}{3}-C)}{sinC}$=$\frac{\sqrt{3}}{2tanC}+\frac{1}{2}$,
又△ABC為銳角三角形,故$\frac{π}{6}<C<\frac{π}{2}$,
所以$\frac{1}{2}<\frac{c}=\frac{{\sqrt{3}}}{2tanC}+\frac{1}{2}<2$,
于是$\frac{c}$的取值范圍是$(\frac{1}{2},2)$.
點評 本題考查兩角和與差的三角函數(shù),正弦定理的應(yīng)用,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1] | B. | (0,1) | C. | [1,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\sqrt{21}$ | C. | $\sqrt{53}$ | D. | $\sqrt{61}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c>a>b | B. | a>b>c | C. | a>c>b | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com