18.如圖所示的幾何體的左視圖是(  )
A.B.C.D.

分析 根據(jù)幾何體中小正方體的排放位置進行判斷.

解答 解:設(shè)幾何體中小正方體的邊長為1,
∵幾何體的高為3,寬為2,故左視圖的高為3,長為2.
∵幾何體前排為單個小正方體,
∴左視圖的右側(cè)為單個小正方形,
故選B.

點評 本題考查了簡單空間圖形的三視圖,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在6道題中有3道數(shù)學(xué)題、2道語文題和1道英語題,如果不放回地依次抽取2道題,求在第1次抽到數(shù)學(xué)題的條件下,第2次抽到語文或英語題的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.把正偶數(shù)數(shù)列{2n}的數(shù)按上小下大,左小右大的原則排列成如圖“三角形”所示的數(shù)表,設(shè)aij(i,j∈N*)是位于這個三角形數(shù)表中從上往下數(shù)第i行,從左往右數(shù)第j個數(shù)(如a42=16),若amn=2012,則$\frac{m}{n}$=$\frac{45}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.兩枚均勻的骰子一起投擲,記事件A={至少有一枚骰子6點向上},B={兩枚骰子都是6點向上},則P(B|A)=( 。
A.$\frac{1}{6}$B.$\frac{1}{36}$C.$\frac{1}{12}$D.$\frac{1}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.參數(shù)方程$\left\{\begin{array}{l}{x=sin\frac{α}{2}+cos\frac{α}{2}}\\{y=\sqrt{2+sinα}}\end{array}\right.$(α為參數(shù))表示的普通方程是y2-x2=1(-$\sqrt{2}$≤x≤$\sqrt{2}$,1≤y≤$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖給出一個“直角三角形數(shù)陣”,滿足每一列成等差數(shù)列,從第三行起每一行的數(shù)成等比數(shù)列,且每一行的公比相等,記第i行、第j列的數(shù)為ai,j(i≥j,I,j∈N*),則a5,j=5($\frac{1}{2}$)j+1,,ai,5=$\frac{i}{64}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知甲在上班途中要經(jīng)過兩個路口,在第一個路口遇到紅燈的概率為0.5,兩個路口連續(xù)遇到紅燈的概率為0.4,則甲在第一個路口遇到紅燈的條件下,第二個路口遇到紅燈的概率為( 。
A.0.6B.0.7C.0.8D.0.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,過橢圓C的左焦點且傾斜角為60°的直線與圓x2+y2=a2相交,所得弦的長度為$\sqrt{7}$
(1)求橢圓C的方程;
(2)設(shè)橢圓C的上頂點為M,若直線l:y=kx+m與橢圓C交于兩點A,B(A,B都不是上頂點),且直線MA與MB的斜率之積為$\frac{3}{4}$.
(a)求證:直線l過定點;
(b)求△MAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知長方形ABCD中,AD=$\sqrt{2}$,AB=2,E為AB中點.將△ADE沿DE折起到△PDE,得到四棱錐P-BCDE,如圖所示.
(1)若點M為PC中點,求證:BM∥平面PDE;
(2)當(dāng)平面PDE⊥平面BCDE時,求四棱錐P-BCDE的體積;
(3)求證:DE⊥PC.

查看答案和解析>>

同步練習(xí)冊答案