16.已知$\overrightarrow{a}$=(-1,3),$\overrightarrow$=(1,t),若($\overrightarrow{a}$-2$\overrightarrow$)⊥$\overrightarrow{a}$,則實(shí)數(shù)t=2.

分析 根據(jù)兩向量垂直的坐標(biāo)表示,列出方程,解方程求出t的值.

解答 解:由已知,得$\overrightarrow{a}$-2$\overrightarrow$=(-3,3-2t);
因?yàn)椋?\overrightarrow{a}$-2$\overrightarrow$)⊥$\overrightarrow{a}$,
所以($\overrightarrow{a}$-2$\overrightarrow$)•$\overrightarrow{a}$=3+3(3-2t)=0,
解得t=2.
故答案為:2.

點(diǎn)評(píng) 本題考查了兩向量垂直的坐標(biāo)表示與運(yùn)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知
(1)(2)(3)
(1)(2)求作:$\overrightarrow{a}$十$\overrightarrow$;           (3)求作:$\overrightarrow{a}$十$\overrightarrow$十$\overrightarrow{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.(1+x)n(3-x)的展開(kāi)式中各項(xiàng)系數(shù)的和為1024,則n的值為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.當(dāng)函數(shù)f(x)=x+$\frac{1}{x-1}$,(x>1)取得最小值時(shí),相應(yīng)的自變量x等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)定義在(0,+∞)上的單調(diào)函數(shù)f(x)對(duì)任意的x∈(0,+∞)都有f(f(x)-log3x)=4,則不等式f(a2+2a)>4的解集為( 。
A.{a|a<-3或a>1}B.{a|a>1}C.{a|-3<x<1}D.{a|a<-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)x,y滿足約束條件:$\left\{{\begin{array}{l}{x,y≥0}\\{x-y≥-1}\\{x+y≤3}\end{array}}\right.$,則z=x-2y的最大值為( 。
A.-3B.3C.4D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.經(jīng)濟(jì)學(xué)家在研究供求關(guān)系時(shí),一般用縱軸表示產(chǎn)品價(jià)格(自變量),而用橫軸來(lái)表示產(chǎn)品數(shù)量(因變量).某類產(chǎn)品的市場(chǎng)供求關(guān)系在不受外界因素(如政府限制最高價(jià)格等)的影響下,市場(chǎng)會(huì)自發(fā)調(diào)解供求關(guān)系:當(dāng)產(chǎn)品價(jià)格P1低于均衡價(jià)格P0時(shí),需求量大于供應(yīng)量,價(jià)格會(huì)上升為P2;當(dāng)產(chǎn)品價(jià)格P2高于均衡價(jià)格P0時(shí),供應(yīng)量大于需求量,價(jià)格又會(huì)下降,價(jià)格如此波動(dòng)下去,產(chǎn)品價(jià)格將會(huì)逐漸靠進(jìn)均衡價(jià)格P0.能正確表示上述供求關(guān)系的圖形是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,在同一平面內(nèi),點(diǎn)A位于兩平行直線m,n的同側(cè),且A到m,n的距離分別為1,3.點(diǎn)B、C分別在m、n上,$|{\overrightarrow{AB}+\overrightarrow{AC}}|=5$,則$\overrightarrow{AB}•\overrightarrow{AC}$的最大值是$\frac{21}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若f(x)是定義在(-∞,+∞)上的偶函數(shù),?x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}<0$,則( 。
A.f(3)<f(1)<f(-2)B.f(1)<f(-1)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(-2)<f(1)

查看答案和解析>>

同步練習(xí)冊(cè)答案